
AI code 
review tools

We built the industry’s 
first controlled evaluation 
framework to compare 
leading AI code review 
tools with real-world 
code, injected bugs & an 
objective scoring model.

Guide

2 0 2 5 E VA LU AT I O N G U I D E



Table of 
contents

Introduction 3

Phase 1 8

Phase 2 11

Don’t just take our word for it 21

Ready to get started? 23

Aggregate comparison  
and tool fit guide 19



A I  C O D E R E V I E W TO O L S 3

Introduction

The AI code review market has experienced explosive 

growth, with 49% of all engineering teams incorporating 

some form of AI into their review processes.* This  

validates a fundamental truth: even as AI transforms  

code generation, the pull request (PR) process remains 

central to software development. Code reviews serve  

as the critical “goalkeeper” function, catching bugs  

before they reach production. And beyond delivery,  

code reviews even stand as a system of record for 

engineering work done and decisions made.

However, the rapid adoption of AI-powered code  

review tools across the software industry has also 

outpaced our collective ability to objectively evaluate  

their effectiveness. While marketing claims and anecdotal 

user experiences offer fragmented insights, there remains  

a significant gap in standardized, repeatable methodologies 

for measuring how well these tools actually perform  

in real-world development environments.

To bring clarity to the space, we ran a head-to-head 

benchmark of five leading AI code review tools –  

CodeRabbit, LinearB, GitHub Copilot, Qodo Merge, and 

Graphite Diamond – using real-world code, seeded bugs, 

and structured scoring. Our goal was not only to assess 

their accuracy in detecting and correcting bugs,  

but also to understand how they behave in the full  

lifecycle of PR workflows, including noise level, 

configuration flexibility, and interaction quality.

The dawn of AI code reviews

Our benchmark was built  
using the following criteria: 

Constrained environment

Each tool was tested on the same set of  

seeded bugs across identical versions  

of a shared open-source codebase.  

This eliminated environmental differences  

and ensured consistency in test inputs.

Multi-factor evaluation

We assessed each tool on both technical 

performance (i.e., bug detection and fix quality) 

and experiential factors (clarity, Developer 

Experience, and configurability). These 

dimensions were scored independently to 

provide a multidimensional assessment of value.

Repeatable framework

All code changes, injected bugs, review artifacts, 

and evaluation scripts were documented and 

preserved in a version-controlled repository. 

Beyond just inter-tool parity in testing, this allows 

other teams to replicate, extend, or customize 

the benchmark for their own evaluation needs.
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49%
Reviews involving AI

15%
Fully autonomous review

34%
Mixed collaboration

Phased methodology

We implemented a two-phase testing  

approach. Phase 1 established a baseline  

using simple, well-scoped bugs across 

JavaScript and Python. Phase 2 introduced 

more complex scenarios, including cross-service 

interactions and follow-up commits, to assess 

how tools perform under more realistic and 

dynamic development conditions.

This evaluation framework helps engineering teams  

make informed, data-driven decisions when evaluating  

AI code review tools. Rather than relying solely on demos  

or feature lists, this benchmark provides a grounded  

way to measure performance in the contexts that  

matter most: accuracy, responsiveness, usability,  

and integration into existing engineering workflows.

Whether you’re still studying the offerings in the  

market or you’re already strategizing on how to improve 

your team’s use of AI code reviews, this benchmark  

is designed to surface the unobvious trade-offs.

Ultimately, what we found surprised us. Some tools 

overwhelmed developers with noise. Others silently  

missed key bugs. A few went the extra mile – resolving 

comments or suggesting fixes after a follow-up commit. 

This guide captures those insights and gives you  

everything you need to run your own comparison.

* Our 2025 AI Data Report found that while 51% of code reviews  

are still handled solely by humans, 49% now involve AI – either  

through mixed collaboration (34%) or fully autonomous review (15%).

AI code review breakdown

https://linearb.io/resources/devex-guide-ai-driven-software-development
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Scoring 
system

To provide a consistent and objective comparison of the  

5 AI code review tools, we developed a structured scoring 

framework on a scale of 0 to 2 that evaluates each tool across 

multiple dimensions. Tools were assessed both at the individual 

PR level (for technical competence) and holistically (for clarity, 

configurability, and overall DevEx). This rubric ensures that each 

tool is judged not only on its ability to catch bugs, but also by how 

effectively it integrates into real-world engineering workflows.

Measurement Range Scoring description

Competence 0 - 2 0 – Failed to catch the bug

1 – Caught the bug but did not propose a fix or give adequate context

2 – Caught the bug, proposed a fix, and explained why for learning context

P E R P R

Clarity 0 - 2 0 – Extremely noisy, responding where not intended, or responding in excess

1 – Moderately noisy or distracting with extra information

2 – Provides only what is needed in a response

Configurability 0 - 2 0 – Unconfigurable, or lacking scoping or control where the tool is applied

1 – Low configurations, lacking the orchestration needed for sophisticated 

control

2 – Highly scoped and configurable to fit an enterprise-level infrastructure

UX/DevEx 0 - 2 0 – Friction during setup or adoption, and/or end developer user flow is non-

obvious

1 – Has an intuitive user flow

2 – Seamless adoption and DevEx

P E R TO O L
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Tooling overview S T R O N G L I M IT E D W E A K

Evaluation  
criteria

LinearB  
gitStream CodeRabbit

GitHub  
Copilot Qodo Merge

Graphite  
Diamond

Git  
providers

GitHub, GitHub 
Server, GitLab, 
GitLab Server, 
Bitbucket 
Cloud

GitHub, GitHub 
Server, GitLab, 
GitLab Server, 
Bitbucket 
Cloud, Azure 
DevOps

GitHub GitHub, GitLab,  
Bitbucket, 
Azure, Gitea

GitHub Cloud 
and Server (no 
OPA)

Runner GitHub 
Actions, 
GitLab 
Pipeline, 
Bitbucket 
Runner

Service OR
GitHub 
Actions

Service GitHub Action 
or self-hosted 
Lambda

Service

Model Sonnet 4 GPT-4 
GPT-3.5 Turbo

Codex-1 All No public 
details 

Project? No GitHub, GitLab, 
Jira, Linear

No public 
details 

Ticket context 
(GitHub, Jira, 
Linear)

No public 
details 

Customization? Yes, repo files,
Trigger, Regex, 
filtering rules, 
& PR context-
specific 
configurations.

Config files in 
project root, 
AST Grep rules

Limited, in 
GitHub repo 
web settings

Yes with 
settings files 
in repos, auto 
approve

No
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Tooling overview S T R O N G L I M IT E D W E A K

Evaluation  
criteria

LinearB  
gitStream CodeRabbit

GitHub  
Copilot Qodo Merge

Graphite  
Diamond

Style guide? Yes, repo for 
org level files

Yes, in WebUI
from PR 
comments

Yes, in repo 
settings, or 
config files

Yes, in config 
files

Yes, in UI

Inline code 
suggestions?

Yes Yes Yes Partial, with 
checkbox and 
reaction

Yes

Admin UI? Yes Yes Yes No Yes

Orchestration Trigger, Regex 
and filtering 
rules

AST Grep rules No public 
details 

Auto approve No public 
details 

Pricing Free $12-$24/
month per 
user

$39 per user/
month for 
an Enteprise 
account

$30/month  
per user 
with 5000 
messages 
limit

$20 USD 
per active 
committer per 
month 



Testing methodology

In Phase 1, all testing for the AI code review 

benchmark was conducted in a single 

repository (linearzig/benchmark-ai-code-

review) with multiple branches: a base 

JavaScript branch and a base Python branch. 

For each base branch, we tested 4 bugs, for 

a total of 8. Each of these 8 bugs were tested 

for the 5 tools, producing 40 test cases of bug 

branches attempting to merge into its base 

branch. All bugs were isolated examples with 

minimal complexity. No clues were included in 

commits or branches about their relative bugs.

Eight types of bugs (defined below)  

were defined in structured folders, then 

manually copied, pushed to a branch, and  

then used in a PR request where each  

tool was activated to run a review.

Phase 1
Phase 1 established a 
baseline using simple,  
well-scoped bugs in 
Python and JavaScript 
to measure basic bug 
detection capabilities 
across all 5 tools.

https://github.com/linearzig/benchmark-ai-code-review
https://github.com/linearzig/benchmark-ai-code-review
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Bugs 1-8
Bug ID Language Category Description Source/Justification

Python Logic
Off-by-one error in a loop boundary 
(e.g. using ‘<=’ instead of ‘<’)

Common logic error seen in real-world PRs; flagged by 
Google and Facebook engineering blogs as top bug class; 
often missed in human code review due to visual similarity

1

Python API Misuse
Incorrect use of a mutable  
default argument  
(e.g., list as default param)

Widely cited in Python best practices (e.g., Fluent Python, 
Python docs); causes state bleed across calls; hard  
for AI to detect without understanding call context

2

Python Maintainability
Nested conditional logic  
with unclear return paths

Contributes to cognitive complexity; flagged  
in tools like SonarQube; relevant to platform  
teams working on observability and testability

3

Python Security
Unsanitized user input passed  
to system call (e.g., os.system)

CWE-78 / OWASP Top 10; requires semantic  
understanding of dataflow from input to sink

4

JavaScript Security
Unescaped user input injected  
into HTML without sanitization

OWASP JS DOM-based XSS; common in frontend PRs, 
especially React if `dangerouslySetInnerHTML` is used

5

JavaScript Logic
Incorrectly scoped closure inside 
loop (e.g., var used instead of let)

Classic JS bug from ES5 days; still occurs and breaks  
async logic; appears in MDN/StackOverflow/JS audits

6

JavaScript Performance
Inefficient object cloning  
using JSON.parse/stringify  
on non-JSON-safe data

JS anti-pattern; flagged in performance audits  
(e.g. Chrome DevTools, Lighthouse); AI tools  
may not detect performance traps

7

JavaScript API Misuse
Forgetting to return a value  
from an array map() call

Common logic mistake; flagged in dozens of production  
bug reports; silent failure when working with arrays

8
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Phase 1 established a critical 
baseline: all five AI code review 
tools successfully detected 
every bug in the initial test suite. 

Results 

CodeRabbit

Bugs 1, 2, 3, 4, 5, 6, 7, 8

LinearB

Bugs 1, 2, 3, 4, 5, 6, 7, 8

GitHub Copilot

Bugs 1, 2, 3, 4, 5, 6, 7, 8

Qodo Merge

Bugs 1, 2, 3, 4, 5, 6, 7, 8

Graphite Diamond

Bugs 1, 2, 3, 4, 5, 6, 7, 8 

These results demonstrate that the market has reached 

a has reached a fundamental competency threshold for 

catching common developer mistakes like off-by-one errors, 

mutable default arguments, and basic XSS vulnerabilities. 

However, this universal success revealed that bug detection 

capability alone was insufficient for differentiation –  

the real differences emerged in how tools communicated  

their findings and integrated into developer workflows. 

Provided the most comprehensive analysis with  

detailed explanations and fix suggestions, but its  

by-default verbosity created review friction through 

excessive collapsed sections, ASCII art, and overwhelming  

comment volumes that required significant parsing effort. 

Distinguished itself by providing thorough bug  

detection with clean, focused reviews enhanced  

by YAML-based configuration and slash commands  

that gave teams precise control over review  

triggers without the noise plaguing other tools. 

Leveraged its native integration advantage, offering the 

unique ability to assign reviews directly from draft PRs, 

though its feedback remained notably shallow in some 

areas, with limited educational value for developers. 

Delivered clean, well-formatted reviews with actionable 

suggestions and unique local CLI capabilities. 

Proved the most disruptive with minimal configuration 

options and behavior like automatically reviewing  

all PRs, including already-open ones. 

While consolidating all tools into one project was 

convenient for setup, it introduced significant noise at 

the PR level. With multiple tools active on the same PRs, 

their outputs overlapped unpredictably, making it harder to 

isolate and study each tool’s behavior. Tools created extra 

responses in places where they were not being actively 

evaluated. That said, because all tool events triggered 

at roughly the same time, they didn’t appear to directly 

influence each other. From these learnings, a new round  

of methodology was proposed for the next phase.



Testing methodology

As we previously covered, the original 

benchmarking process in Phase 1  

required a tedious, repetitive workflow: 

manually creating branches with distinct 

names, copying in bugged files, and  

pushing changes to GitHub. It worked,  

but it wasn’t scalable. It was also noisy.

In Phase 2, we re-envisioned that process 

to be more automated. The benchmarking 

workflow was rebuilt in Cursor to use bash 

scripts, git commands, Markdown documents 

holding prompts, and proposed bugs staged 

in labeled folders. This effectively turned the 

Cursor IDE into an NLP testing workbench. 

It’s worth adding that this testing workbench 

can be operated with any agent, not just 

Cursor. That’s because the local scripts and 

context from git provide substantial context 

and determinism to eliminate testing errors. 

The new process sped up testing dramatically, 

reduced humor errors, and made results 

reproducible for evaluative purposes.

Phase 2
Phase 2 introduced 
more complex scenarios, 
including cross-service 
interactions and follow-
up commits, to assess 
how tools perform under 
more realistic & dynamic 
development conditions.



A I  C O D E R E V I E W TO O L S 1 2

Our streamlined new process allowed us to split the 

testing into 5 separate repositories to reduce cross-tool 

noise without adding unmanageable complexity. It also 

let us study more complex behaviors to match developer 

expectations, like submitting follow-up commits. We’ve 

open-sourced this process and the supporting assets here. 

Inside, you’ll find the bash scripts, bug planning  

docs, verification checklists, and more.

In sum, our new process  
gave rise to the following  
5 improvements:

Introducing run.sh:  
One command, full workflow

The core of this phase is a bash script – run.sh – that 

abstracts away the manual steps. You can now trigger  

the full benchmark flow with a single command, like:

../benchmarking/run.sh --bug 7 --tool graphite

Authored in Cursor, the script is well documented 

and has CLI help, allowing any new conversation  

to quickly study and learn how to use it. It takes  

care of deterministic actions like: 

•	 Pushing the changes

•	 Activating the AI code review tool

•	 Collecting the response for scoring

•	 Inserting a specific bug into a clean repo

This could have been built as an MCP server, but by  

keeping it a bash script the workflow remained equally 

executable by both AI and humans, with minimal friction. 

This not only saves time but also reduces human  

error and makes results more reproducible.

Supporting artifacts  
for bug creation

To guide repeatable, real-world bug creation,  

the repo now includes a detailed methodology  

directory full of context documents:

BUG_VERIFICATION.md 

Checklist for validating inserted bugs

BUGS.md 

Complete list of bug types and their intended difficulty

BUG_PLAN.md 

Mapping of which bugs test which tool behaviors

DEBUGGING.md 

Tips for troubleshooting tool performance during testing

BUG_CREATION_GUIDE.md 

Step-by-step instructions for introducing bugs

This documentation allows anyone to ideate,  

insert, & verify new bugs consistently, and test  

them across all tools (more on this later).

Isolated repo setup  
for fair testing

To ensure clean comparisons, we forked an  

abandoned and archived open source project  

– BioDrop – into five separate repositories, each  

pre-configured with only one AI code review tool:

•	 BioDrop - Qodo

•	 BioDrop - GitHub

•	 BioDrop - LinearB

•	 BioDrop - Graphite Diamond

•	 BioDrop - CodeRabbit

Each repo starts from the same baseline,  

ensuring tool behavior is isolated and controlled.

1

2

3

https://github.com/linearzig/benchmark-ai-code-review/tree/methodology-phase-2
https://github.com/linearzig/benchmark-ai-code-review/tree/methodology-phase-2
https://github.com/EddieHubCommunity/BioDrop
https://github.com/linearzig/biodrop-qodo
https://github.com/linearzig/biodrop-github
https://github.com/linearzig/biodrop-linearb
https://github.com/linearzig/biodrop-graphite
https://github.com/linearzig/biodrop-coderabbit
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A more flexible,  
extensible framework

This new setup allows for easy expansion. Tools can  

be added or removed from the benchmark without 

disrupting others. New projects can be swapped into test 

tools across different tech stacks. Bug diffs are preserved 

in a standalone directory for easy review and validation.

Within Phase 2, benchmarking AI code review tools moved 

from a series of manual tasks to a scalable, transparent, 

and extensible framework – one that more precisely mirrors 

how modern engineering orgs operate. It also bridges  

the methodology of the first phase into something  

more automatable, for future benchmarks on the tooling.

Testing more intricate,  
inter-connected bugs

Phase 2 also introduced more complex bugs,  

designed to push tools beyond simple syntax  

mistakes and test their ability to reason across systems. 

These bugs reflect the kinds of issues real engineers 

face, and reveal which tools can go beyond linting-level 

suggestions. You’ll find a more detailed breakdown  

of all Phase 2 bugs in the following section.

4 5
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Bugs 9-16
Bug ID Language Category Description Source/Justification

JavaScript Concurrency
Race condition in account-pro-
file association with non-atomic 
check-then-save operations

Critical concurrency bug in production systems; MongoDB 
race conditions documented in official docs; requires 
understanding of atomic operations and distributed systems

9

JavaScript Security
Fullstack privilege escalation  
via client-trusted state and  
session propagation

OWASP Top 10 A01:2021 Broken Access Control; requires 
understanding of auth flows across frontend/backend. 
Represents fullstack bugs crossing client/server boundaries.

10

JavaScript Security
Cross-service data injection  
via deprecated API parameters 
and user input injection

CWE-78 OS Command Injection; deprecated API  
usage creates security holes; requires understanding  
of API evolution and cross-service data flow

11

Python Security
Inline JavaScript/HTML  
injection in Jinja2 templates  
with unsafe rendering

OWASP XSS; template injection vulnerabilities; requires 
understanding of template engines and cross-language 
security. Designed to test embedded JS/HTML inside Python.

12

JavaScript Concurrency
Microservice race condition  
with eventual consistency and  
fire-and-forget notifications

Distributed systems concurrency; eventual  
consistency problems; requires understanding  
of microservice architecture and distributed  
transactions. Also reflects miscommunication  
between microservices, as flagged in the technical plan.

13

JavaScript Security
Outdated library functions  
with weak security parameters 
(MD5 weak encryption)

CWE-327 Use of a Broken or Risky Cryptographic  
Algorithm; legacy compatibility creates security risks; 
requires understanding of cryptographic best practices. 
Intentionally includes deprecated library usage and  
outdated function signatures to surface legacy tech debt.

14

JavaScript Logic
Function calls with wrong 
argument types causing security 
bypasses and weak processing

Type safety violations across module boundaries; 
security bypass through fallback mechanisms; requires 
understanding of function contracts and type systems. This 
bug uses functions defined outside the PR scope to simulate 
boundary-crossing bugs developers frequently miss.

15

JavaScript Performance
Memory leaks in event-driven 
architecture with uncleared intervals 
and growing data structures

Resource management in event-driven systems;  
memory leaks in production Node.js apps; requires 
understanding of event loops and garbage collection

16
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Results Competence 

Bug  #9 0

Bug  #10 2

Bug  #11 2

Bug  #12 2

Bug  #13 2

Bug  #14 2

Bug  #15 2

Bug  #16 2

Bug  #9 0

Bug  #10 2

Bug  #11 2

Bug  #12 2

Bug  #13 1

Bug  #14 2

Bug  #15 1

Bug  #16 2

Bug  #9 0

Bug  #10 1

Bug  #11 0

Bug  #12 2

Bug  #13 0

Bug  #14 0

Bug  #15 1

Bug  #16 2

0 – Failed to catch the bug

1 – Caught the bug but did not propose a fix or give adequate context

2 – Caught the bug, proposed a fix, and explained why for learning context

Bug  #9 0

Bug  #10 1

Bug  #11 2

Bug  #12 1

Bug  #13 2

Bug  #14 0

Bug  #15 1

Bug  #16 2

Bug  #9 0

Bug  #10 2

Bug  #11 2

Bug  #12 2

Bug  #13 1

Bug  #14 1

Bug  #15 1

Bug  #16 2
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Below you’ll find a breakdown 
of the most important findings 
from Phase 2, organized by tool. 

CodeRabbit delivered the most detailed and comprehensive 

reviews across the board. In any case where it received  

a top score (2), it consistently surfaced more bugs,  

better explanations, and multiple code suggestions. 

However, this level of detail came with a tradeoff:

•	 Reviews were often overwhelming, with many  

collapsed sections and dense blocks of commentary.

•	 In several cases, developers reported that the 

experience felt like a treasure hunt, where  

identifying the most critical issues required  

digging through a large volume of notes.

•	 While powerful, CodeRabbit introduced high  

friction into the review process, making it  

harder to quickly assess and act on feedback.

LinearB emerged as a top performer, going head-to-head 

with CodeRabbit in terms of bug detection and  

suggested fixes, but doing so with far less noise.

•	 Its commentary was clear, relevant, and  

concise, making reviews easier to navigate.

•	 Developers could use slash commands and .cm  

rules to quickly re-run reviews, adding to its flexibility.

•	 Its best-performing case was Bug 10, where it  

provided highly actionable and precise feedback.

One of LinearB’s standout features was its ability  

to resolve its own outdated comments. For example,  

in Bug 9, when the reviewer committed a fix, LinearB 

automatically dismissed its earlier review comment, 

something no other tool in the benchmark did.

This level of contextual awareness not only enhanced 

review quality but also contributed to a smoother  

and more intelligent DevEx. It cleared up clutter in  

the PR and allowed the developer to quickly assess  

what to tackle next. Re-evaluating the PR after each  

commit kept the review fresh and up to date.

Copilot was the most convenient tool to use. It was the only 

one that allowed direct assignment from the PR interface, 

making it feel native to GitHub. However, its review 

feedback was minimal and surface-level in some cases:

•	 Suggestions were often sparse, lacking the depth  

or specificity needed to help a developer improve.

•	 In some cases, Copilot failed to offer clear fixes or 

explanations, delivering just enough information to  

flag an issue, but not enough to confidently resolve it.

•	 For beginner developers or quick PRs, it might  

suffice. But for deeper code quality  

checks, Copilot came up short.
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Qodo Merge stood out for its clean formatting and ease-of-

use. It frequently suggested direct code changes that could 

be applied immediately, making it efficient for developers 

who want quick, actionable reviews. While its commentary 

wasn’t the most in-depth, its recommendations were clear 

and low-friction, ideal for straightforward bug scenarios.

Graphite was the most inconsistent and temperamental  

of the tools tested. In some scenarios, it failed to  

detect bugs entirely, offering no suggested changes.

•	 One key observation is that Graphite prefers to offload 

the review process to its external dashboard, which 

operates as a sort of “reviewed review queue.”

•	 This approach often clashed with the standard  

GitHub PR workflow, creating a disjointed experience 

where developers had to jump between platforms.

•	 Ultimately, Graphite felt underpowered and 

disconnected from the typical developer workflow.



In real-world development, PRs don’t live in a vacuum. 

Developers often push follow-up commits, either to fix 

issues raised during code review or to refine work-in-

progress code. That’s why Bug 9 was designed to test a 

critical, often-overlooked dimension of AI code reviewers: 

how they handle iterative feedback cycles. Do tools  

repeat the same feedback on subsequent commits?  

If a developer doesn’t fix a flagged issue, will the tool 

surface it again? If a developer does fix it, can the tool 

recognize and resolve its own past comments?

This wasn’t just a test of bug detection. It was a test  

of how tools adapt when the code changes.

What we did
For Bug 9, each AI code review tool was given  

a PR containing a seeded bug. After observing  

their initial reviews, we pushed a follow-up commit  

that either fully addressed the flagged issue, or  

partially addressed it, to simulate an incomplete fix. 

The goal was to see if the AI would:

•	 Re-run the review process

•	 Update or refine its feedback

•	 Dismiss or resolve its own previous comments

What we found
LinearB stood out as the only tool that automatically 

marked its own inline comment as resolved when the bug 

was fixed. It not only provided helpful suggestions during 

the initial review but demonstrated a clear understanding 

of state change – acknowledging when a developer had 

addressed its feedback. In one case, it even followed  

up with a “Looks good to me” after the resolution.

A closer look at Bug 9
Qodo Merge offered a partial solution by striking  

through resolved comments. While not as thorough  

as LinearB, it still indicated change recognition,  

which helped reduce clutter in the review thread.

CodeRabbit, despite its high competency in detecting bugs, 

did not resolve its own comments, creating ambiguity in 

whether the feedback was still valid after the follow-up. 

Its verbose style (often including prompts and collapsed 

sections) made this particularly difficult to parse.

Graphite struggled the most. In some cases, it failed  

to leave follow-up feedback entirely, or did not recognize 

that the PR had changed. This created a disjointed review 

experience and left developers guessing whether  

the original issue had truly been addressed.

GitHub Copilot, though easy to assign and invoke,  

similarly did not adapt to the follow-up commit,  

leaving its prior comments untouched and  

making no acknowledgment of the new code.

Why this matters
In modern development, iterative PR workflows  

are the norm. Tools that treat reviews as one-and-done 

events can create confusion, bloat, and friction –  

especially on fast-moving teams. Bug 9 showed  

that stateful behavior is a major differentiator.

LinearB’s ability to intelligently track resolution  

and close the loop isn’t just a UX improvement;  

it’s a signal that the tool understands context over  

time. For teams looking to integrate AI into real-world  

SDLC practices, that makes all the difference.



A I  C O D E R E V I E W TO O L S 1 9

Aggregate 
comparison  
& tool fit guide

After evaluating each tool across both phases  

of the benchmark – covering 16 seeded bugs 

and multiple dimensions of DevEx – we identified 

meaningful patterns in how these tools behave 

under real-world PR workflows. Below is a  

holistic comparison to help your team choose  

the right tool based on your unique priorities:

Bug detection
(Phase 1+2) Clarity Configurability DevEx

Final Score 
(out of 22)

Aggregate tool scorecard

13/16 1/2 2/2 1/2 17/22

15/16 0/2 1/2 1/2 17/22

11/16 1/2 0/2 2/2 14/22

13/16 1/2 2/2 1/2 16/22

10/16 1/2 0/2 1/2 12/22

S T R O N G L I M IT E D W E A K
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Strengths Trade-offs Best fit for

Tool strengths & trade-offs

Highly configurable, 
low-noise, context-
aware, resolves 
comments post-fix, 
YAML control

No IDE-level 
integration or 
conversational 
feedback

•	 Enterprise teams needing precision,  
control, and seamless team governance. 

•	 Choose LinearB if you want a highly 
customizable tool that respects your 
developers’ time, offers rule-based control,  
and adapts to follow-up commits.

Deep bug  
detection, rich 
explanations, high 
educational value

Verbose reviews, 
difficult to parse  
at scale	

•	 Teams prioritizing learning and  
thorough AI feedback.

•	 Choose CodeRabbit if you value rich 
educational content and detailed bug  
context – even if it comes with extra noise.

Fastest to deploy, 
convenient native 
GitHub integration

Surface-level 
feedback, limited 
clarity on fixes	

•	 Teams seeking lightweight AI  
assistance for low-risk PRs.

•	 Copilot is best for teams already inside  
GitHub workflows who want a light-touch, fast 
review without needing deep configuration.

Clean formatting, 
decent local CLI 
support, strikethrough 
logic on comment 
resolution	

Steep learning 
curve, limited 
customization	

•	 Teams already using Copilot who  
need basic PR augmentation.

•	 Choose Qodo Merge for CLI-focused  
teams who want helpful formatting  
and a solid baseline of review support.

Always-on PR 
automation, decent 
default formatting

No config or  
external dashboard, 
misses context 
across commits	

•	 Small teams experimenting with AI  
assistance across high PR volume.

•	 Be cautious with Graphite if your team requires 
nuanced control, contextual understanding, or 
seamless integration into iterative PR flows.
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Our AI Code Review Benchmark is designed to be  

fully reproducible, enabling engineering teams to  

validate these findings and extend the evaluation to 

their specific use cases. All benchmark code, test cases, 

and automation scripts are available in the open-source 

repository (linked below), with detailed documentation  

for replicating the complete testing methodology. 

The benchmark also includes an automated bash  

script that can deploy any combination of bugs  

across multiple AI tools, making it straightforward to  

test new tools or create additional vulnerability  

scenarios. Whether you want to verify our results, 

benchmark additional tools, or adapt the methodology  

for your organization’s specific technology stack, below 

you’ll find everything you need to run comprehensive  

AI code review evaluations in your own environment.

Here’s how to get started:

Use our open benchmarking repo

We’ve packaged everything into a public  

GitHub repo:  github.com/linearzig/benchmark-

ai-code-review. Inside, you’ll find:

•	 Scripts and docs for staging  

and validating bugs

•	 Evaluation rubrics, scoring  

templates, and example PRs

•	 A collection of seeded bugs  

for both JavaScript and Python

Choose your tools

You can test any combination of tools – simply 

fork a clean project into separate repos, each 

Don’t just take our word for it
with one tool enabled (as we did  

with BioDrop). This isolation ensures  

a clean, unbiased evaluation.

Generate bugs with  
the agentic workflow

Use our run.sh script to generate and  

insert bugs with a single command:

./run.sh --bug 7 --tool graphite

This workflow allows for on-demand bug 

generation via natural language prompts, staging 

of bugs into isolated branches or repos, plus 

automated PR creation and review triggering

Score each tool

We recommend that you evaluate  

tool performance at two levels:

•	 Per PR: Did the tool detect  

the bug? Did it suggest a fix?

•	 Per tool: How does it handle clarity, 

configurability, and Developer Experience?

A full scoring rubric is included in the repo  

along with a worksheet to track your results.

Test follow-up commits

In advanced tests (like Bug 9), push follow-up 

commits to see how tools respond. Do they 

resolve old comments? Re-review updated code? 

Or do they repeat old feedback? LinearB stood 

out here – it was the only tool to mark its own 

comment as resolved after a bug was fixed.

Improve it

1

2

3

4

5

6

https://github.com/linearzig/benchmark-ai-code-review
https://github.com/linearzig/benchmark-ai-code-review
https://github.com/EddieHubCommunity/BioDrop
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The power of this framework  
is its adaptability. Here are two  
high-leverage ways to take it further:

Add an LLM judge to 
automate scoring

Manual scoring is insightful, but time-consuming 

and subjective. By integrating an LLM-based 

judge into your workflow, you can  

automate evaluation at scale. 

 

You can start by prompting an LLM with  

the provided rubric and sample reviews, or go 

further and build a scoring pipeline that feeds 

reviews directly into an LLM-based evaluator. 

Some teams have even fine-tuned lightweight 

models to emulate expert review heuristics.

Automate it in your 
pipelines

Once you’ve benchmarked once, it’s easy to turn  

it into a regression suite that runs continuously:

•	 CI/CD integration: Drop the benchmark  

into a staging pipeline. Every time your  

AI tool updates, rerun key bugs and  

evaluate changes in performance.

•	 Tool drift monitoring: Just like unit tests 

catch regressions in code, your benchmark 

suite can detect when a tool starts missing 

previously detected bugs or introduces noise.

•	 Pre-adoption testing: Integrate this process 

into tool evaluations when selecting a vendor. 

It’s a powerful way to validate marketing 

claims with reproducible tests.

Think of this benchmark as your own test 

harness. With LLM scoring and CI automation, 

you’ll move from one-time assessment to a  

living, evolving system for AI DevEx evaluation.
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AI code review tools have officially moved from the  

hype phase to a necessity. Our benchmark revealed  

that all five tools tested are now capable of detecting 

common bugs with a reasonable degree of accuracy.  

That alone signals a maturing market: one where AI is  

no longer just a novelty in the code review process,  

but a practical asset in day-to-day engineering work.

As the AI code review market continues to evolve  

rapidly, this benchmark provides a foundation for  

ongoing evaluation and informed decision-making that  

will become increasingly valuable as new tools emerge  

and existing solutions mature. The methodology 

established here is just the beginning. Future iterations  

will expand language coverage, incorporate more 

sophisticated vulnerability patterns, and track  

tool performance improvements over time. 

Now that you’ve seen  
our assessment, try testing  
the tools out for yourself: 

•	 LinearB 

Precise, low-noise reviews with config control

•	 CodeRabbit 

Highly detailed reviews with  

strong detection and explanation

•	 GitHub Copilot 

Quick setup, native GitHub integration

Ready to get started? 
•	 Qodo Merge 

Clean, developer-friendly CLI-powered reviews

•	 Graphite Diamond 

Opinionated PR automation, external dashboard view

The tools above will keep evolving – models will  

improve, interfaces will change, and new capabilities  

will emerge. Looking ahead, we expect major progress  

in three areas over the next 12 to 18 months. First, tools  

will become more “stateful,” meaning they’ll develop  

the ability to track PR evolution across commits and 

dismiss outdated feedback. Second, configuration will 

become more powerful and accessible: allowing teams 

to tailor reviews not just by file or repo, but by intent and 

impact. Finally, we’ll see these tools expand to cover  

more programming languages, deeper vulnerability 

patterns, and broader integration into the SDLC.

With a consistent, extensible evaluation strategy  

in place, your organization can evolve alongside  

them. This framework gives you more than a snapshot; 

it’s a foundation for continuous assessment, informed 

adoption, and long-term alignment between AI tooling  

and your engineering standards. In a space defined  

by rapid innovation, the ability to measure what  

matters has never been so important.

https://linearb.io/
https://www.coderabbit.ai/
https://github.com/features/copilot
https://www.qodo.ai/
https://diamond.graphite.dev/
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LinearB is an engineering productivity 

platform that helps enterprises define 

exactly how code is brought to production 

and maximize the efficiency of their 

engineering organizations. With full visibility 

and control over your team’s operations, 

you can finally improve your developer 

efficiency, effectiveness, and experience.

Book a demo

https://linearb.io/book-a-demo

