
AI code
review tools

We built the industry’s
first controlled evaluation
framework to compare
leading AI code review
tools with real-world
code, injected bugs & an
objective scoring model.

Guide

2 0 2 5 E VA LU AT I O N G U I D E

Table of
contents

Introduction 3

Phase 1 8

Phase 2 11

Don’t just take our word for it 21

Ready to get started? 23

Aggregate comparison
and tool fit guide 19

A I C O D E R E V I E W TO O L S 3

Introduction

The AI code review market has experienced explosive

growth, with 49% of all engineering teams incorporating

some form of AI into their review processes.* This

validates a fundamental truth: even as AI transforms

code generation, the pull request (PR) process remains

central to software development. Code reviews serve

as the critical “goalkeeper” function, catching bugs

before they reach production. And beyond delivery,

code reviews even stand as a system of record for

engineering work done and decisions made.

However, the rapid adoption of AI-powered code

review tools across the software industry has also

outpaced our collective ability to objectively evaluate

their effectiveness. While marketing claims and anecdotal

user experiences offer fragmented insights, there remains

a significant gap in standardized, repeatable methodologies

for measuring how well these tools actually perform

in real-world development environments.

To bring clarity to the space, we ran a head-to-head

benchmark of five leading AI code review tools –

CodeRabbit, LinearB, GitHub Copilot, Qodo Merge, and

Graphite Diamond – using real-world code, seeded bugs,

and structured scoring. Our goal was not only to assess

their accuracy in detecting and correcting bugs,

but also to understand how they behave in the full

lifecycle of PR workflows, including noise level,

configuration flexibility, and interaction quality.

The dawn of AI code reviews

Our benchmark was built
using the following criteria:

Constrained environment

Each tool was tested on the same set of

seeded bugs across identical versions

of a shared open-source codebase.

This eliminated environmental differences

and ensured consistency in test inputs.

Multi-factor evaluation

We assessed each tool on both technical

performance (i.e., bug detection and fix quality)

and experiential factors (clarity, Developer

Experience, and configurability). These

dimensions were scored independently to

provide a multidimensional assessment of value.

Repeatable framework

All code changes, injected bugs, review artifacts,

and evaluation scripts were documented and

preserved in a version-controlled repository.

Beyond just inter-tool parity in testing, this allows

other teams to replicate, extend, or customize

the benchmark for their own evaluation needs.

A I C O D E R E V I E W TO O L S 4

49%
Reviews involving AI

15%
Fully autonomous review

34%
Mixed collaboration

Phased methodology

We implemented a two-phase testing

approach. Phase 1 established a baseline

using simple, well-scoped bugs across

JavaScript and Python. Phase 2 introduced

more complex scenarios, including cross-service

interactions and follow-up commits, to assess

how tools perform under more realistic and

dynamic development conditions.

This evaluation framework helps engineering teams

make informed, data-driven decisions when evaluating

AI code review tools. Rather than relying solely on demos

or feature lists, this benchmark provides a grounded

way to measure performance in the contexts that

matter most: accuracy, responsiveness, usability,

and integration into existing engineering workflows.

Whether you’re still studying the offerings in the

market or you’re already strategizing on how to improve

your team’s use of AI code reviews, this benchmark

is designed to surface the unobvious trade-offs.

Ultimately, what we found surprised us. Some tools

overwhelmed developers with noise. Others silently

missed key bugs. A few went the extra mile – resolving

comments or suggesting fixes after a follow-up commit.

This guide captures those insights and gives you

everything you need to run your own comparison.

* Our 2025 AI Data Report found that while 51% of code reviews

are still handled solely by humans, 49% now involve AI – either

through mixed collaboration (34%) or fully autonomous review (15%).

AI code review breakdown

https://linearb.io/resources/devex-guide-ai-driven-software-development

A I C O D E R E V I E W TO O L S 5

Scoring
system

To provide a consistent and objective comparison of the

5 AI code review tools, we developed a structured scoring

framework on a scale of 0 to 2 that evaluates each tool across

multiple dimensions. Tools were assessed both at the individual

PR level (for technical competence) and holistically (for clarity,

configurability, and overall DevEx). This rubric ensures that each

tool is judged not only on its ability to catch bugs, but also by how

effectively it integrates into real-world engineering workflows.

Measurement Range Scoring description

Competence 0 - 2 0 – Failed to catch the bug

1 – Caught the bug but did not propose a fix or give adequate context

2 – Caught the bug, proposed a fix, and explained why for learning context

P E R P R

Clarity 0 - 2 0 – Extremely noisy, responding where not intended, or responding in excess

1 – Moderately noisy or distracting with extra information

2 – Provides only what is needed in a response

Configurability 0 - 2 0 – Unconfigurable, or lacking scoping or control where the tool is applied

1 – Low configurations, lacking the orchestration needed for sophisticated

control

2 – Highly scoped and configurable to fit an enterprise-level infrastructure

UX/DevEx 0 - 2 0 – Friction during setup or adoption, and/or end developer user flow is non-

obvious

1 – Has an intuitive user flow

2 – Seamless adoption and DevEx

P E R TO O L

A I C O D E R E V I E W TO O L S 6

Tooling overview S T R O N G L I M IT E D W E A K

Evaluation
criteria

LinearB
gitStream CodeRabbit

GitHub
Copilot Qodo Merge

Graphite
Diamond

Git
providers

GitHub, GitHub
Server, GitLab,
GitLab Server,
Bitbucket
Cloud

GitHub, GitHub
Server, GitLab,
GitLab Server,
Bitbucket
Cloud, Azure
DevOps

GitHub GitHub, GitLab,
Bitbucket,
Azure, Gitea

GitHub Cloud
and Server (no
OPA)

Runner GitHub
Actions,
GitLab
Pipeline,
Bitbucket
Runner

Service OR
GitHub
Actions

Service GitHub Action
or self-hosted
Lambda

Service

Model Sonnet 4 GPT-4
GPT-3.5 Turbo

Codex-1 All No public
details

Project? No GitHub, GitLab,
Jira, Linear

No public
details

Ticket context
(GitHub, Jira,
Linear)

No public
details

Customization? Yes, repo files,
Trigger, Regex,
filtering rules,
& PR context-
specific
configurations.

Config files in
project root,
AST Grep rules

Limited, in
GitHub repo
web settings

Yes with
settings files
in repos, auto
approve

No

A I C O D E R E V I E W TO O L S 7

Tooling overview S T R O N G L I M IT E D W E A K

Evaluation
criteria

LinearB
gitStream CodeRabbit

GitHub
Copilot Qodo Merge

Graphite
Diamond

Style guide? Yes, repo for
org level files

Yes, in WebUI
from PR
comments

Yes, in repo
settings, or
config files

Yes, in config
files

Yes, in UI

Inline code
suggestions?

Yes Yes Yes Partial, with
checkbox and
reaction

Yes

Admin UI? Yes Yes Yes No Yes

Orchestration Trigger, Regex
and filtering
rules

AST Grep rules No public
details

Auto approve No public
details

Pricing Free $12-$24/
month per
user

$39 per user/
month for
an Enteprise
account

$30/month
per user
with 5000
messages
limit

$20 USD
per active
committer per
month

Testing methodology

In Phase 1, all testing for the AI code review

benchmark was conducted in a single

repository (linearzig/benchmark-ai-code-

review) with multiple branches: a base

JavaScript branch and a base Python branch.

For each base branch, we tested 4 bugs, for

a total of 8. Each of these 8 bugs were tested

for the 5 tools, producing 40 test cases of bug

branches attempting to merge into its base

branch. All bugs were isolated examples with

minimal complexity. No clues were included in

commits or branches about their relative bugs.

Eight types of bugs (defined below)

were defined in structured folders, then

manually copied, pushed to a branch, and

then used in a PR request where each

tool was activated to run a review.

Phase 1
Phase 1 established a
baseline using simple,
well-scoped bugs in
Python and JavaScript
to measure basic bug
detection capabilities
across all 5 tools.

https://github.com/linearzig/benchmark-ai-code-review
https://github.com/linearzig/benchmark-ai-code-review

A I C O D E R E V I E W TO O L S 9

Bugs 1-8
Bug ID Language Category Description Source/Justification

Python Logic
Off-by-one error in a loop boundary
(e.g. using ‘<=’ instead of ‘<’)

Common logic error seen in real-world PRs; flagged by
Google and Facebook engineering blogs as top bug class;
often missed in human code review due to visual similarity

1

Python API Misuse
Incorrect use of a mutable
default argument
(e.g., list as default param)

Widely cited in Python best practices (e.g., Fluent Python,
Python docs); causes state bleed across calls; hard
for AI to detect without understanding call context

2

Python Maintainability
Nested conditional logic
with unclear return paths

Contributes to cognitive complexity; flagged
in tools like SonarQube; relevant to platform
teams working on observability and testability

3

Python Security
Unsanitized user input passed
to system call (e.g., os.system)

CWE-78 / OWASP Top 10; requires semantic
understanding of dataflow from input to sink

4

JavaScript Security
Unescaped user input injected
into HTML without sanitization

OWASP JS DOM-based XSS; common in frontend PRs,
especially React if `dangerouslySetInnerHTML` is used

5

JavaScript Logic
Incorrectly scoped closure inside
loop (e.g., var used instead of let)

Classic JS bug from ES5 days; still occurs and breaks
async logic; appears in MDN/StackOverflow/JS audits

6

JavaScript Performance
Inefficient object cloning
using JSON.parse/stringify
on non-JSON-safe data

JS anti-pattern; flagged in performance audits
(e.g. Chrome DevTools, Lighthouse); AI tools
may not detect performance traps

7

JavaScript API Misuse
Forgetting to return a value
from an array map() call

Common logic mistake; flagged in dozens of production
bug reports; silent failure when working with arrays

8

A I C O D E R E V I E W TO O L S 1 0

Phase 1 established a critical
baseline: all five AI code review
tools successfully detected
every bug in the initial test suite.

Results

CodeRabbit

Bugs 1, 2, 3, 4, 5, 6, 7, 8

LinearB

Bugs 1, 2, 3, 4, 5, 6, 7, 8

GitHub Copilot

Bugs 1, 2, 3, 4, 5, 6, 7, 8

Qodo Merge

Bugs 1, 2, 3, 4, 5, 6, 7, 8

Graphite Diamond

Bugs 1, 2, 3, 4, 5, 6, 7, 8

These results demonstrate that the market has reached

a has reached a fundamental competency threshold for

catching common developer mistakes like off-by-one errors,

mutable default arguments, and basic XSS vulnerabilities.

However, this universal success revealed that bug detection

capability alone was insufficient for differentiation –

the real differences emerged in how tools communicated

their findings and integrated into developer workflows.

Provided the most comprehensive analysis with

detailed explanations and fix suggestions, but its

by-default verbosity created review friction through

excessive collapsed sections, ASCII art, and overwhelming

comment volumes that required significant parsing effort.

Distinguished itself by providing thorough bug

detection with clean, focused reviews enhanced

by YAML-based configuration and slash commands

that gave teams precise control over review

triggers without the noise plaguing other tools.

Leveraged its native integration advantage, offering the

unique ability to assign reviews directly from draft PRs,

though its feedback remained notably shallow in some

areas, with limited educational value for developers.

Delivered clean, well-formatted reviews with actionable

suggestions and unique local CLI capabilities.

Proved the most disruptive with minimal configuration

options and behavior like automatically reviewing

all PRs, including already-open ones.

While consolidating all tools into one project was

convenient for setup, it introduced significant noise at

the PR level. With multiple tools active on the same PRs,

their outputs overlapped unpredictably, making it harder to

isolate and study each tool’s behavior. Tools created extra

responses in places where they were not being actively

evaluated. That said, because all tool events triggered

at roughly the same time, they didn’t appear to directly

influence each other. From these learnings, a new round

of methodology was proposed for the next phase.

Testing methodology

As we previously covered, the original

benchmarking process in Phase 1

required a tedious, repetitive workflow:

manually creating branches with distinct

names, copying in bugged files, and

pushing changes to GitHub. It worked,

but it wasn’t scalable. It was also noisy.

In Phase 2, we re-envisioned that process

to be more automated. The benchmarking

workflow was rebuilt in Cursor to use bash

scripts, git commands, Markdown documents

holding prompts, and proposed bugs staged

in labeled folders. This effectively turned the

Cursor IDE into an NLP testing workbench.

It’s worth adding that this testing workbench

can be operated with any agent, not just

Cursor. That’s because the local scripts and

context from git provide substantial context

and determinism to eliminate testing errors.

The new process sped up testing dramatically,

reduced humor errors, and made results

reproducible for evaluative purposes.

Phase 2
Phase 2 introduced
more complex scenarios,
including cross-service
interactions and follow-
up commits, to assess
how tools perform under
more realistic & dynamic
development conditions.

A I C O D E R E V I E W TO O L S 1 2

Our streamlined new process allowed us to split the

testing into 5 separate repositories to reduce cross-tool

noise without adding unmanageable complexity. It also

let us study more complex behaviors to match developer

expectations, like submitting follow-up commits. We’ve

open-sourced this process and the supporting assets here.

Inside, you’ll find the bash scripts, bug planning

docs, verification checklists, and more.

In sum, our new process
gave rise to the following
5 improvements:

Introducing run.sh:
One command, full workflow

The core of this phase is a bash script – run.sh – that

abstracts away the manual steps. You can now trigger

the full benchmark flow with a single command, like:

../benchmarking/run.sh --bug 7 --tool graphite

Authored in Cursor, the script is well documented

and has CLI help, allowing any new conversation

to quickly study and learn how to use it. It takes

care of deterministic actions like:

•	 Pushing the changes

•	 Activating the AI code review tool

•	 Collecting the response for scoring

•	 Inserting a specific bug into a clean repo

This could have been built as an MCP server, but by

keeping it a bash script the workflow remained equally

executable by both AI and humans, with minimal friction.

This not only saves time but also reduces human

error and makes results more reproducible.

Supporting artifacts
for bug creation

To guide repeatable, real-world bug creation,

the repo now includes a detailed methodology

directory full of context documents:

BUG_VERIFICATION.md

Checklist for validating inserted bugs

BUGS.md

Complete list of bug types and their intended difficulty

BUG_PLAN.md

Mapping of which bugs test which tool behaviors

DEBUGGING.md

Tips for troubleshooting tool performance during testing

BUG_CREATION_GUIDE.md

Step-by-step instructions for introducing bugs

This documentation allows anyone to ideate,

insert, & verify new bugs consistently, and test

them across all tools (more on this later).

Isolated repo setup
for fair testing

To ensure clean comparisons, we forked an

abandoned and archived open source project

– BioDrop – into five separate repositories, each

pre-configured with only one AI code review tool:

•	 BioDrop - Qodo

•	 BioDrop - GitHub

•	 BioDrop - LinearB

•	 BioDrop - Graphite Diamond

•	 BioDrop - CodeRabbit

Each repo starts from the same baseline,

ensuring tool behavior is isolated and controlled.

1

2

3

https://github.com/linearzig/benchmark-ai-code-review/tree/methodology-phase-2
https://github.com/linearzig/benchmark-ai-code-review/tree/methodology-phase-2
https://github.com/EddieHubCommunity/BioDrop
https://github.com/linearzig/biodrop-qodo
https://github.com/linearzig/biodrop-github
https://github.com/linearzig/biodrop-linearb
https://github.com/linearzig/biodrop-graphite
https://github.com/linearzig/biodrop-coderabbit

A I C O D E R E V I E W TO O L S 1 3

A more flexible,
extensible framework

This new setup allows for easy expansion. Tools can

be added or removed from the benchmark without

disrupting others. New projects can be swapped into test

tools across different tech stacks. Bug diffs are preserved

in a standalone directory for easy review and validation.

Within Phase 2, benchmarking AI code review tools moved

from a series of manual tasks to a scalable, transparent,

and extensible framework – one that more precisely mirrors

how modern engineering orgs operate. It also bridges

the methodology of the first phase into something

more automatable, for future benchmarks on the tooling.

Testing more intricate,
inter-connected bugs

Phase 2 also introduced more complex bugs,

designed to push tools beyond simple syntax

mistakes and test their ability to reason across systems.

These bugs reflect the kinds of issues real engineers

face, and reveal which tools can go beyond linting-level

suggestions. You’ll find a more detailed breakdown

of all Phase 2 bugs in the following section.

4 5

A I C O D E R E V I E W TO O L S 1 4

Bugs 9-16
Bug ID Language Category Description Source/Justification

JavaScript Concurrency
Race condition in account-pro-
file association with non-atomic
check-then-save operations

Critical concurrency bug in production systems; MongoDB
race conditions documented in official docs; requires
understanding of atomic operations and distributed systems

9

JavaScript Security
Fullstack privilege escalation
via client-trusted state and
session propagation

OWASP Top 10 A01:2021 Broken Access Control; requires
understanding of auth flows across frontend/backend.
Represents fullstack bugs crossing client/server boundaries.

10

JavaScript Security
Cross-service data injection
via deprecated API parameters
and user input injection

CWE-78 OS Command Injection; deprecated API
usage creates security holes; requires understanding
of API evolution and cross-service data flow

11

Python Security
Inline JavaScript/HTML
injection in Jinja2 templates
with unsafe rendering

OWASP XSS; template injection vulnerabilities; requires
understanding of template engines and cross-language
security. Designed to test embedded JS/HTML inside Python.

12

JavaScript Concurrency
Microservice race condition
with eventual consistency and
fire-and-forget notifications

Distributed systems concurrency; eventual
consistency problems; requires understanding
of microservice architecture and distributed
transactions. Also reflects miscommunication
between microservices, as flagged in the technical plan.

13

JavaScript Security
Outdated library functions
with weak security parameters
(MD5 weak encryption)

CWE-327 Use of a Broken or Risky Cryptographic
Algorithm; legacy compatibility creates security risks;
requires understanding of cryptographic best practices.
Intentionally includes deprecated library usage and
outdated function signatures to surface legacy tech debt.

14

JavaScript Logic
Function calls with wrong
argument types causing security
bypasses and weak processing

Type safety violations across module boundaries;
security bypass through fallback mechanisms; requires
understanding of function contracts and type systems. This
bug uses functions defined outside the PR scope to simulate
boundary-crossing bugs developers frequently miss.

15

JavaScript Performance
Memory leaks in event-driven
architecture with uncleared intervals
and growing data structures

Resource management in event-driven systems;
memory leaks in production Node.js apps; requires
understanding of event loops and garbage collection

16

A I C O D E R E V I E W TO O L S 1 5

Results Competence

Bug #9 0

Bug #10 2

Bug #11 2

Bug #12 2

Bug #13 2

Bug #14 2

Bug #15 2

Bug #16 2

Bug #9 0

Bug #10 2

Bug #11 2

Bug #12 2

Bug #13 1

Bug #14 2

Bug #15 1

Bug #16 2

Bug #9 0

Bug #10 1

Bug #11 0

Bug #12 2

Bug #13 0

Bug #14 0

Bug #15 1

Bug #16 2

0 – Failed to catch the bug

1 – Caught the bug but did not propose a fix or give adequate context

2 – Caught the bug, proposed a fix, and explained why for learning context

Bug #9 0

Bug #10 1

Bug #11 2

Bug #12 1

Bug #13 2

Bug #14 0

Bug #15 1

Bug #16 2

Bug #9 0

Bug #10 2

Bug #11 2

Bug #12 2

Bug #13 1

Bug #14 1

Bug #15 1

Bug #16 2

A I C O D E R E V I E W TO O L S 1 6

Below you’ll find a breakdown
of the most important findings
from Phase 2, organized by tool.

CodeRabbit delivered the most detailed and comprehensive

reviews across the board. In any case where it received

a top score (2), it consistently surfaced more bugs,

better explanations, and multiple code suggestions.

However, this level of detail came with a tradeoff:

•	 Reviews were often overwhelming, with many

collapsed sections and dense blocks of commentary.

•	 In several cases, developers reported that the

experience felt like a treasure hunt, where

identifying the most critical issues required

digging through a large volume of notes.

•	 While powerful, CodeRabbit introduced high

friction into the review process, making it

harder to quickly assess and act on feedback.

LinearB emerged as a top performer, going head-to-head

with CodeRabbit in terms of bug detection and

suggested fixes, but doing so with far less noise.

•	 Its commentary was clear, relevant, and

concise, making reviews easier to navigate.

•	 Developers could use slash commands and .cm

rules to quickly re-run reviews, adding to its flexibility.

•	 Its best-performing case was Bug 10, where it

provided highly actionable and precise feedback.

One of LinearB’s standout features was its ability

to resolve its own outdated comments. For example,

in Bug 9, when the reviewer committed a fix, LinearB

automatically dismissed its earlier review comment,

something no other tool in the benchmark did.

This level of contextual awareness not only enhanced

review quality but also contributed to a smoother

and more intelligent DevEx. It cleared up clutter in

the PR and allowed the developer to quickly assess

what to tackle next. Re-evaluating the PR after each

commit kept the review fresh and up to date.

Copilot was the most convenient tool to use. It was the only

one that allowed direct assignment from the PR interface,

making it feel native to GitHub. However, its review

feedback was minimal and surface-level in some cases:

•	 Suggestions were often sparse, lacking the depth

or specificity needed to help a developer improve.

•	 In some cases, Copilot failed to offer clear fixes or

explanations, delivering just enough information to

flag an issue, but not enough to confidently resolve it.

•	 For beginner developers or quick PRs, it might

suffice. But for deeper code quality

checks, Copilot came up short.

A I C O D E R E V I E W TO O L S 1 7

Qodo Merge stood out for its clean formatting and ease-of-

use. It frequently suggested direct code changes that could

be applied immediately, making it efficient for developers

who want quick, actionable reviews. While its commentary

wasn’t the most in-depth, its recommendations were clear

and low-friction, ideal for straightforward bug scenarios.

Graphite was the most inconsistent and temperamental

of the tools tested. In some scenarios, it failed to

detect bugs entirely, offering no suggested changes.

•	 One key observation is that Graphite prefers to offload

the review process to its external dashboard, which

operates as a sort of “reviewed review queue.”

•	 This approach often clashed with the standard

GitHub PR workflow, creating a disjointed experience

where developers had to jump between platforms.

•	 Ultimately, Graphite felt underpowered and

disconnected from the typical developer workflow.

In real-world development, PRs don’t live in a vacuum.

Developers often push follow-up commits, either to fix

issues raised during code review or to refine work-in-

progress code. That’s why Bug 9 was designed to test a

critical, often-overlooked dimension of AI code reviewers:

how they handle iterative feedback cycles. Do tools

repeat the same feedback on subsequent commits?

If a developer doesn’t fix a flagged issue, will the tool

surface it again? If a developer does fix it, can the tool

recognize and resolve its own past comments?

This wasn’t just a test of bug detection. It was a test

of how tools adapt when the code changes.

What we did
For Bug 9, each AI code review tool was given

a PR containing a seeded bug. After observing

their initial reviews, we pushed a follow-up commit

that either fully addressed the flagged issue, or

partially addressed it, to simulate an incomplete fix.

The goal was to see if the AI would:

•	 Re-run the review process

•	 Update or refine its feedback

•	 Dismiss or resolve its own previous comments

What we found
LinearB stood out as the only tool that automatically

marked its own inline comment as resolved when the bug

was fixed. It not only provided helpful suggestions during

the initial review but demonstrated a clear understanding

of state change – acknowledging when a developer had

addressed its feedback. In one case, it even followed

up with a “Looks good to me” after the resolution.

A closer look at Bug 9
Qodo Merge offered a partial solution by striking

through resolved comments. While not as thorough

as LinearB, it still indicated change recognition,

which helped reduce clutter in the review thread.

CodeRabbit, despite its high competency in detecting bugs,

did not resolve its own comments, creating ambiguity in

whether the feedback was still valid after the follow-up.

Its verbose style (often including prompts and collapsed

sections) made this particularly difficult to parse.

Graphite struggled the most. In some cases, it failed

to leave follow-up feedback entirely, or did not recognize

that the PR had changed. This created a disjointed review

experience and left developers guessing whether

the original issue had truly been addressed.

GitHub Copilot, though easy to assign and invoke,

similarly did not adapt to the follow-up commit,

leaving its prior comments untouched and

making no acknowledgment of the new code.

Why this matters
In modern development, iterative PR workflows

are the norm. Tools that treat reviews as one-and-done

events can create confusion, bloat, and friction –

especially on fast-moving teams. Bug 9 showed

that stateful behavior is a major differentiator.

LinearB’s ability to intelligently track resolution

and close the loop isn’t just a UX improvement;

it’s a signal that the tool understands context over

time. For teams looking to integrate AI into real-world

SDLC practices, that makes all the difference.

A I C O D E R E V I E W TO O L S 1 9

Aggregate
comparison
& tool fit guide

After evaluating each tool across both phases

of the benchmark – covering 16 seeded bugs

and multiple dimensions of DevEx – we identified

meaningful patterns in how these tools behave

under real-world PR workflows. Below is a

holistic comparison to help your team choose

the right tool based on your unique priorities:

Bug detection
(Phase 1+2) Clarity Configurability DevEx

Final Score
(out of 22)

Aggregate tool scorecard

13/16 1/2 2/2 1/2 17/22

15/16 0/2 1/2 1/2 17/22

11/16 1/2 0/2 2/2 14/22

13/16 1/2 2/2 1/2 16/22

10/16 1/2 0/2 1/2 12/22

S T R O N G L I M IT E D W E A K

A I C O D E R E V I E W TO O L S 2 0

Strengths Trade-offs Best fit for

Tool strengths & trade-offs

Highly configurable,
low-noise, context-
aware, resolves
comments post-fix,
YAML control

No IDE-level
integration or
conversational
feedback

•	 Enterprise teams needing precision,
control, and seamless team governance.

•	 Choose LinearB if you want a highly
customizable tool that respects your
developers’ time, offers rule-based control,
and adapts to follow-up commits.

Deep bug
detection, rich
explanations, high
educational value

Verbose reviews,
difficult to parse
at scale	

•	 Teams prioritizing learning and
thorough AI feedback.

•	 Choose CodeRabbit if you value rich
educational content and detailed bug
context – even if it comes with extra noise.

Fastest to deploy,
convenient native
GitHub integration

Surface-level
feedback, limited
clarity on fixes	

•	 Teams seeking lightweight AI
assistance for low-risk PRs.

•	 Copilot is best for teams already inside
GitHub workflows who want a light-touch, fast
review without needing deep configuration.

Clean formatting,
decent local CLI
support, strikethrough
logic on comment
resolution	

Steep learning
curve, limited
customization	

•	 Teams already using Copilot who
need basic PR augmentation.

•	 Choose Qodo Merge for CLI-focused
teams who want helpful formatting
and a solid baseline of review support.

Always-on PR
automation, decent
default formatting

No config or
external dashboard,
misses context
across commits	

•	 Small teams experimenting with AI
assistance across high PR volume.

•	 Be cautious with Graphite if your team requires
nuanced control, contextual understanding, or
seamless integration into iterative PR flows.

A I C O D E R E V I E W TO O L S 2 1

Our AI Code Review Benchmark is designed to be

fully reproducible, enabling engineering teams to

validate these findings and extend the evaluation to

their specific use cases. All benchmark code, test cases,

and automation scripts are available in the open-source

repository (linked below), with detailed documentation

for replicating the complete testing methodology.

The benchmark also includes an automated bash

script that can deploy any combination of bugs

across multiple AI tools, making it straightforward to

test new tools or create additional vulnerability

scenarios. Whether you want to verify our results,

benchmark additional tools, or adapt the methodology

for your organization’s specific technology stack, below

you’ll find everything you need to run comprehensive

AI code review evaluations in your own environment.

Here’s how to get started:

Use our open benchmarking repo

We’ve packaged everything into a public

GitHub repo: github.com/linearzig/benchmark-

ai-code-review. Inside, you’ll find:

•	 Scripts and docs for staging

and validating bugs

•	 Evaluation rubrics, scoring

templates, and example PRs

•	 A collection of seeded bugs

for both JavaScript and Python

Choose your tools

You can test any combination of tools – simply

fork a clean project into separate repos, each

Don’t just take our word for it
with one tool enabled (as we did

with BioDrop). This isolation ensures

a clean, unbiased evaluation.

Generate bugs with
the agentic workflow

Use our run.sh script to generate and

insert bugs with a single command:

./run.sh --bug 7 --tool graphite

This workflow allows for on-demand bug

generation via natural language prompts, staging

of bugs into isolated branches or repos, plus

automated PR creation and review triggering

Score each tool

We recommend that you evaluate

tool performance at two levels:

•	 Per PR: Did the tool detect

the bug? Did it suggest a fix?

•	 Per tool: How does it handle clarity,

configurability, and Developer Experience?

A full scoring rubric is included in the repo

along with a worksheet to track your results.

Test follow-up commits

In advanced tests (like Bug 9), push follow-up

commits to see how tools respond. Do they

resolve old comments? Re-review updated code?

Or do they repeat old feedback? LinearB stood

out here – it was the only tool to mark its own

comment as resolved after a bug was fixed.

Improve it

1

2

3

4

5

6

https://github.com/linearzig/benchmark-ai-code-review
https://github.com/linearzig/benchmark-ai-code-review
https://github.com/EddieHubCommunity/BioDrop

A I C O D E R E V I E W TO O L S 2 2

The power of this framework
is its adaptability. Here are two
high-leverage ways to take it further:

Add an LLM judge to
automate scoring

Manual scoring is insightful, but time-consuming

and subjective. By integrating an LLM-based

judge into your workflow, you can

automate evaluation at scale.

You can start by prompting an LLM with

the provided rubric and sample reviews, or go

further and build a scoring pipeline that feeds

reviews directly into an LLM-based evaluator.

Some teams have even fine-tuned lightweight

models to emulate expert review heuristics.

Automate it in your
pipelines

Once you’ve benchmarked once, it’s easy to turn

it into a regression suite that runs continuously:

•	 CI/CD integration: Drop the benchmark

into a staging pipeline. Every time your

AI tool updates, rerun key bugs and

evaluate changes in performance.

•	 Tool drift monitoring: Just like unit tests

catch regressions in code, your benchmark

suite can detect when a tool starts missing

previously detected bugs or introduces noise.

•	 Pre-adoption testing: Integrate this process

into tool evaluations when selecting a vendor.

It’s a powerful way to validate marketing

claims with reproducible tests.

Think of this benchmark as your own test

harness. With LLM scoring and CI automation,

you’ll move from one-time assessment to a

living, evolving system for AI DevEx evaluation.

A I C O D E R E V I E W TO O L S 2 3

AI code review tools have officially moved from the

hype phase to a necessity. Our benchmark revealed

that all five tools tested are now capable of detecting

common bugs with a reasonable degree of accuracy.

That alone signals a maturing market: one where AI is

no longer just a novelty in the code review process,

but a practical asset in day-to-day engineering work.

As the AI code review market continues to evolve

rapidly, this benchmark provides a foundation for

ongoing evaluation and informed decision-making that

will become increasingly valuable as new tools emerge

and existing solutions mature. The methodology

established here is just the beginning. Future iterations

will expand language coverage, incorporate more

sophisticated vulnerability patterns, and track

tool performance improvements over time.

Now that you’ve seen
our assessment, try testing
the tools out for yourself:

•	 LinearB

Precise, low-noise reviews with config control

•	 CodeRabbit

Highly detailed reviews with

strong detection and explanation

•	 GitHub Copilot

Quick setup, native GitHub integration

Ready to get started?
•	 Qodo Merge

Clean, developer-friendly CLI-powered reviews

•	 Graphite Diamond

Opinionated PR automation, external dashboard view

The tools above will keep evolving – models will

improve, interfaces will change, and new capabilities

will emerge. Looking ahead, we expect major progress

in three areas over the next 12 to 18 months. First, tools

will become more “stateful,” meaning they’ll develop

the ability to track PR evolution across commits and

dismiss outdated feedback. Second, configuration will

become more powerful and accessible: allowing teams

to tailor reviews not just by file or repo, but by intent and

impact. Finally, we’ll see these tools expand to cover

more programming languages, deeper vulnerability

patterns, and broader integration into the SDLC.

With a consistent, extensible evaluation strategy

in place, your organization can evolve alongside

them. This framework gives you more than a snapshot;

it’s a foundation for continuous assessment, informed

adoption, and long-term alignment between AI tooling

and your engineering standards. In a space defined

by rapid innovation, the ability to measure what

matters has never been so important.

https://linearb.io/
https://www.coderabbit.ai/
https://github.com/features/copilot
https://www.qodo.ai/
https://diamond.graphite.dev/

A I C O D E R E V I E W TO O L S 2 4

LinearB is an engineering productivity

platform that helps enterprises define

exactly how code is brought to production

and maximize the efficiency of their

engineering organizations. With full visibility

and control over your team’s operations,

you can finally improve your developer

efficiency, effectiveness, and experience.

Book a demo

https://linearb.io/book-a-demo

