
Beyond
the DORA
Frameworks

A Practical Guide
to Data-Driven
Engineering Maturity

Guide

B E YO N D T H E D O R A F R A M E W O R K S 2

Another Day, Another
DX Framework …

Introduction

In recent years, we’ve seen the rise of

research and frameworks to help measure

(and improve) engineering productivity.

For the most part, we are talking about

fantastic works: DORA & SPACE, among

many others, have driven healthy conversations

about what “productivity” means, what a good

Developer Experience looks like, and how

elite teams should aspire to operate.

But as much as we believe this space has

done wonders to create awareness about these

topics, and is fighting the good fight of making

engineering processes more data-driven, I have

also found that it suffers from two main issues:

• Lack of Cohesion

By now, there are many frameworks out

there, each proposing their own set of

KPIs and only covering a small slice of

your team’s work. E.g. DORA metrics are

great, but they’re only about delivery.

You can’t measure the success of your

engineering org with a simple set of metrics.

• Lack of Implementation Details

For the most part, these works lack a

certain real-world touch. They bring in

good theory but are light on implementation:

How do you work on these numbers?

Who should be involved? What are the

ceremonies? What’s the cadence?

In other words, many tech leaders find there

is a gap between the metrics’ world and their

teams’ reality, and don’t know how to bridge it.

In this report, LinearB and the Refactoring

community have partnered to create an

in-depth industry survey to help bridge

this gap and uncover two things:

• The Big Picture

Existing frameworks are awesome, we don’t

need to create new ones. But we need to put

these practices on a bigger map, figure

out how they relate to each other, and

determine their scope and boundaries.

• Playbooks

How teams use data to improve.

In real life. With details.

https://xkcd.com/927/

B E YO N D T H E D O R A F R A M E W O R K S 3

So we asked
30 questions to
350+ engineers
and managers,
and spent two
months working
through the
answers.

Today we are finally presenting our findings!

Here is the agenda:

Scope
Topics, audience size, and

goals of this report.

Methodology
How we worked through

quantitative and qualitative data.

What Is A Successful
Engineering Team?
Working backwards from

people’s answers.

Successful Practices
Teams that do these things

consistently do better than others.

The Role of Metrics
How teams use data to improve.

The Pyramid of
Engineering Maturity
Weaving our findings into a

simple top-down framework.

Let’s dive in!

Luca Rossi

Founder of Refactoring

B E YO N D T H E D O R A F R A M E W O R K S 4

Scope

We got 334 full responses, from people with a

variety of roles in tech:

Role

After removing “other” roles outside of software

engineering (hello to the four Marketing

Managers who answered this survey!), we

have almost perfect parity between IC and

Manager roles (187 vs. 184). That’s by counting

Tech Leads in both camps, as the role varies

significantly depending on the company.

Company Size

Company size distribution is similar to

that of other surveys we have run in the

past. About one third of participants work

at companies with fewer than 25 engineers:

Engineering Manager

34.1%

15%

14.7%

12.9%

7.5%

6.6%

9.3%

Tech Lead

CTO

Other

Staff+ Engineer

Software Engineer

Head/Director/
VP of Engineering

1-
25

36%

0

40

60

80

100

120

N
U

M
B

ER
 O

F
R

ES
P

O
N

S
ES

NUMBER OF ENGINEERS

50
0+

20%

25
-1

00

27%

10
0-

50
0

17%

B E YO N D T H E D O R A F R A M E W O R K S 5

Work Setup

The vast majority of respondents work

from home in some capacity, with only

11.7% working full-time in an office.

However, the office population almost

doubled from last year (11.6% vs 6.3%),

when we asked the same question in a similar

survey. The full remote share, on the other hand,

stayed the same, with most of the migration

happening from hybrid to office setups.

This suggests—as is to be expected—

that a fully remote model is significantly

harder to revert than hybrid.

Supplementary
LinearB Labs Data

In November, LinearB published the fourth

annual edition of their 2025 Software Engineering

Benchmarks Report to help engineering teams

baseline their performance against data-backed

industry standards. Throughout this guide,

you’ll find supplemental insights from their

analysis of 6.1+ million pull requests

from 3,000+ organizations worldwide.

Data Sourced From

N
U

M
B

ER
 O

F
R

ES
P

O
N

S
ES

140

120

100

80

60

40

20

0
Full remote, but
some people go
into the office

HybridFull remote, we
have no office

I always work at
the office

12
%

17
%

30
%

42
%

3,000+
Teams

6.1M+
PRs

32
Countries

B E YO N D T H E D O R A F R A M E W O R K S 6

Questions

Below you’ll find a comprehensive list of all the

questions we asked our survey participants:

• How much you agree with the following (1-5):

• I am happy with the dev

practices of my team

• I am happy with the dev

tools my team uses

• My team’s processes are efficient

• I have enough focus time

• I regularly need to wait for

others to do work

• It is easy to deploy new software

• Our code review process is efficient

• Software requirements are clear

• How often does your team ship to production?

• How long does it take to get a PR approved?

• How long does it take to deploy software

to production after a PR is closed?

• How much time does your team spend

on KTLO / maintenance / tech debt work?

• How often does your team deliver

projects on time?

• How often do you actually spend

your time the way it was planned?

• Does your team intentionally allocate

engineering investment to different areas?

• What percentage of your work (or PRs)

are linked to a project issue?

• Do you feel engineering work is

well-regarded among the leadership

and non-technical stakeholders?

• Does your team track and review any

team productivity or efficiency metrics?

• Which engineering metrics do you track?

• Do you use metrics at team or

individual level? Or both?

• How useful do you find engineering metrics?

• How does your team use metrics and

data to improve? (Open question)

• What is the #1 benefit you get

from using metrics?

• What is the #1 issue you have

in using metrics?

• Is there something else you

would like to tell us?

It’s a lot to cover!
Here is how we worked
through their answers.

B E YO N D T H E D O R A F R A M E W O R K S 7

Methodology

Finding good, reliable insights is hard,

for a myriad of reasons:

• Correlation ≠ causation — Even if some

things are clearly correlated, it can

be difficult to figure out what’s

upstream and what’s downstream.

• Statistical significance — Given the

(relatively) small sample size,

you can only trust big deviations.

• Human bias — We are human, and thus come

to the party with our own set of opinions and

biases. If I expect some result, I may more

or less intentionally look for it in the data.

So, to find clear patterns, we put all the

data in a giant Airtable, where we

exploded results by several dimensions.

Then, for each candidate insight, we looked

for confirmation from multiple angles,

including similar questions, related topics,

and open answers where respondents

wrote about their team’s practices.

Above, you can see a slice of our response

data, broken down by work setup. We look

for interesting + statistically significant

deviations, look for additional confirmation,

and try to interpret findings.

For the open answers, we went through all

of them manually to extract individual

stories and ideas. We then tagged them

into various categories, plus used AI to

uncover gems we might have missed.

The result is a report that, while still subject

to our own expert interpretation, aims to be a

profound, reliable analysis that blends thousands

of quantitative and qualitative data points.

Count Happy with
dev practices

No need to
wait for others

Spend time
as planned

Time spent
on KTLO

How often
deliver on time

37100% office 2.95 2.89 47% 25% 47%

137Hybrid 3.44 3.11 48% 25% 57%

97Full remote with office 3.46 3.09 57% 23% 58%

57Full remote no office 3.42 3.18 48% 24% 55%

B E YO N D T H E D O R A F R A M E W O R K S 8

Successful teams have
three clear traits

• Engineering is well-regarded among

leadership and non-tech stakeholders

• Engineers are happy about their dev practices

• Projects consistently ship on time

Key Takeaways
Below you’ll find a high-level view of the key
takeaways from the report, highlighting the most
significant findings and actionable insights.

Engineering thrives with
autonomy & mastery

Teams perform best when developers:

• Have enough focus time

• Spend time as planned

• Don’t need to wait for others

Six practices correlate
strongly with success

• Some remote flexibility

(hybrid or full remote)

• Intentional allocation of

engineering time

• Clear requirements

• Frequent code shipping

• Quick PR reviews (minutes, not days)

• Tracking engineering metrics

Metrics work on two levels

• Tactical — Used in sprints, retros, and daily
ceremonies

• Strategic — Used for planning, resource

allocation and performance reviews

Engineering maturity
follows a pyramid

• Transparency (foundation) — Being

aware and creating feedback loops

• Intent (middle) — Intentional

allocation and clear direction

• Speed (top) — Only valuable when

built on the other two layers

B E YO N D T H E D O R A F R A M E W O R K S 9

What Is A Successful
Engineering Team?

To figure out what practices lead to successful

engineering teams, first we need to understand

what a successful team looks like.

Out of all the questions we asked,

there are three we want to focus on:

• Engineers are happy about dev practices

• Engineering is well-regarded among

leadership / non-tech stakeholders

• Projects ship on time

These are the elements that correlate the

strongest with the highest number of positive

behaviors. That is: the gradient of answers for

these questions is most likely to be matched

by a similar gradient in other behaviors.

Engineering is well
regarded among
non-tech stakeholders

Spend time as plannedEnough focus time

3.40 51% 3.35 3.81

3.24 56% 3.20 3.39

2.90 48% 3.02 3.34

2.79 40% 2.59 3.00

2.45 35% 2.45 3.00

Absolutely yes

Yes

Meh

No

Absolutely not

No need to wait for others Happy with dev practices

Engineers are happy
about dev practices

59% 3.80 3.47

54% 3.28 3.12

47% 2.88 2.99

44% 2.78 2.87

41% 2.25 4.00

Strongly agree

Agree

Neither disagee nor agree

Disagree

Strongly disagree

Spend time as planned Enough focus time No need to wait for others

Projects ship on time 59% 3.80 3.47

54% 3.28 3.12

47% 2.88 2.99

44% 2.78 2.87

41% 2.25 4.00

Strongly agree

Agree

Neither disagee nor agree

Disagree

Strongly disagree

Spend time as planned Enough focus time No need to wait for others

B E YO N D T H E D O R A F R A M E W O R K S 1 0

Conversely, we would be hard-pressed to find

low performing teams where all stakeholders—

engineers, managers, and leadership—are happy.

The last question is about predictability. We

found that shipping on time correlates strongly

with most good behaviors we polled for.

By most measures, predictable shipping is

even more important than frequent shipping.

So, what kind of traits are exhibited by teams

that ship on time and where stakeholders

are happy? As you can see from the pictures,

three traits are the most common:

This is not surprising, but it is always

nice to see it backed by numbers.

Engineering being well-regarded,

engineers being happy about their

practices, and projects shipping on

time correlate very strongly with

positive engineering behavior.

Below are some examples we want to point out

(see data above for more):

In teams where engineers are very

happy about dev practices vs.

those where they are neutral, focus

time is 30% more satisfactory.

In teams where engineering is not well

regarded by non-technical stakeholders

vs. those where it is, people need to

wait for others 29% more of the time.

In teams that ship 75% of projects

on time vs. those who ship only

30% on time, people spend

28% more time as planned.

So, the first two questions are strictly qualitative

and collect the opinions of both technical and

non-technical stakeholders. We believe these are

extremely important: in fact, most quantitative

practices (e.g. how often you ship, how much

time is spent on KTLO, …) depend on the team’s

context and do not decisively sort good teams

from bad ones.

1

2

3

Engineers have
enough focus time

Engineers spend time
 as it was planned

Engineers don’t need
to wait for others

B E YO N D T H E D O R A F R A M E W O R K S 1 1

LinearB Labs
Pro-Tip: To begin accurately forecasting
project delivery and determine if timelines can
be moved up, we recommend tracking quality
and predictability metrics like Planning Accuracy
and Capacity Accuracy (as defined below):

Capacity Accuracy

Measures how many issues (or story points)

a team completed in an iteration (planned

or unplanned) compared to the amount

planned for that iteration.

Planning Accuracy

The ratio of planned work vs. what is

actually delivered during a sprint or iteration.

High planning accuracy signals a high level

of predictability and stable execution.

In rare cases teams may have too high Planning

Accuracy (>95%) and too High Capacity Accuracy

(>115%). That means they aren’t taking on

enough planned work–which should be

a priority for improvement initiatives.

LinearB Labs’ research revealed that over half

(69.9%) of engineering projects under-commit

to their iteration plans, and that less than

a fifth (only 16.5%) were in the ideal range.

DevEx and DevProd metrics can be very useful

early indicators for predictable delivery. Tracking

and improving metrics such as PR Size, Code

Rework and Cycle Time can help teams improve

how they make and keep accurate promises

to the business about delivery timelines.

Metric Elite Good Fair Needs Focus

Capacity Accuracy (%) 85 - 115% 75 - 85% or 115 - 125% 70 - 75% or 115 - 130% < 70% or > 130%

Planning Accuracy (%) > 80% 80% - 65% 64% - 45% < 45%

3,026 Orgs, 6,100,878 Pull Requests, 167,437 Active Contributors, Time metrics in minutes or hours, as noted

B E YO N D T H E D O R A F R A M E W O R K S 1 2

Engineering thrives when developers can

cultivate autonomy and mastery. Conversely,

it suffers when developers are not in control

of their time, need to constantly wait for others,

and spend time in meetings and putting

out fires instead of doing creative work.

But what enables focus time, no waiting, and

predictable work? Let’s get into the core of

the report, which breaks down the successful

practices of elite engineering teams.

Software projects can
be unpredictable due to
a multitude of reasons
— from unforeseen
technical challenges
to scope changes.
Engineering metrics,
such as Planning
Accuracy, and workflow
automation tools have
helped us increase
predictability in release
schedules and timelines.”

“

Marko T.
CTO, Assignar

B E YO N D T H E D O R A F R A M E W O R K S 1 3

Successful Practices

A good portion of our survey was comprised

of questions about team or engineering practices.

Once we identified what successful teams look

like, we tried to figure out what practices correlate

the most closely with success indicators.

Work Setup

The various work environments don’t say

much about how people work except

for one case: 100% office-based teams.

Those teams fare worse than others

on several measures:

• Engineers need to wait for others 10% more

• Projects are delivered on time

21% less frequently

• Engineers are, on average, 16.6%

less happy about dev practices

This could be for a variety of reasons. First of all,

in-person teams often face more interruptions,

reducing focus time for deep work. Plus, the lack

of autonomy in traditional office settings can

also lead to dissatisfaction with development

practices, as engineers may feel constrained

by outdated processes or micromanagement,

reducing overall happiness and productivity.

Other setups, conversely, are pretty

comparable: fully remote is not

decisively better or worse than hybrid.

These results suggest that some remote

flexibility significantly helps developers,

but fully remote is not necessarily a

step up from a good hybrid setup.

Here are the six where such

correlation is the strongest:

Happy with
dev practices

No need to
wait for others

Spend time
as planned

Time spent
on KTLO

How often
deliver on time Enough focus time

2.95100% office 2.89 47% 25% 47% 3.19

3.44Hybrid 3.11 48% 25% 57% 3.03

3.46Full remote with office 3.09 57% 23% 58% 3.16

3.42Full remote no office 3.18 48% 24% 55% 3.18

B E YO N D T H E D O R A F R A M E W O R K S 1 4

Intentionally Allocating
Engineering Time

Intentionally allocating engineering time

across various categories (e.g. KTLO vs

Improvements vs New Features) has strong

positive correlation with several traits:

This is something we often discussed

on the newsletter and we were already

big fans of, but we were surprised

by how strong the correlation is.

+6.7%
Focus time (3.16 vs 2.96)

+22%
Time spent as planned (55% vs 45%)

+24%
Projects delivered on time (62% vs 50%)

+14.7%
Happiness about dev practices (3.57 vs 3.11)

Time spent
on KTLO

Yes

No

I have no idea

Spend time
as planned

How often
deliver on time

Happy with
dev practices Enough focus time No need to

wait for others

24% 55% 62% 3.57 3.16 3.12

24% 45% 50% 3.11 2.96 3.03

26% 49% 49% 3.42 3.25 3.15

https://refactoring.fm/p/engineering-investments?utm_source=publication-search
https://refactoring.fm/p/engineering-investments?utm_source=publication-search

B E YO N D T H E D O R A F R A M E W O R K S 1 5

LinearB Labs
Pro-Tip: LinearB’s Engineering Investment
Benchmarks (below) provide a high level view into
where and how engineering teams are investing their
resources. These benchmarks represent the average
investment split across many organizations.

Feature Enhancements

The actions taken to enhance features or deliver

a product that ensures customer satisfaction.

This might include activities such as:

• Customer requested improvements

• Improved performance & utilization

• Improved product reliability or security, etc.

• Iterations to improve adoption/

retention/quality

New Value

The actions performed to invest in new

features that increase revenue and growth

by new customer acquisition or expansion.

This might include activities such as:

• Adding a new feature

• Implementing roadmap work, etc.

• Supporting a new platform

or partner application

KTLO (Keeping the Lights On)

The minimum tasks a company is required to

perform in order to stay operational on a daily

level, while maintaining a stable level of service.

This might include activities such as:

• Maintaining current security posture

• Service and ticket monitoring

& troubleshooting

• Maintaining current levels

of service uptime, etc.

Developer Experience

The actions performed to improve

the productivity of development teams

and their overall experience. This might

include activities such as:

• Code restructuring

• Testing automation

• Better developer tooling

• Working to reduce the size of

the KTLO bucket in the future

B E YO N D T H E D O R A F R A M E W O R K S 1 6

LinearB Labs
We recommend using these categories and investment
percentages as a starting point when aligning R&D
resource investment with the board and executive team.

• Is our Investment Profile very different

rom what’s typical - and if so is

that difference serving us?

• Are we investing below average in New Value?

Or above average in Keeping the Lights On?

• Are we balancing our investment

in New Value with our investment in

the tools and processes that allow

new value to build more effectively?

Engineering teams can use the

investment benchmarks to

help answer questions like:

55% New
Value

20% Feature
Enhancement

15% DevEx

10% Keeping
the Lights On

Investment

Profile

3,026 Orgs
6,100,878 Pull Requests
167,437 Active Contributors
Time metrics in minutes
or hours, as noted

B E YO N D T H E D O R A F R A M E W O R K S 1 7

Clear Requirements

Writing clear requirements is another big winner.

39%
Have more focus time (3.85 vs 2.76)

34%
More projects shipped on time (66% vs 49%)

Spend time
as planned

Strongly agree

Agree

Neither disagree
nor agree

Disagree

Strongly disagree

How often
deliver on time

Happy with
dev practices Enough focus time

63% 66% 4.15 3.85

56% 64% 3.68 3.53

48% 56% 3.43 3.02

47% 49% 3.14 2.76

43% 44% 2.57 2.63

Most traits improve linearly and in tandem

with how clear the requirements are perceived

to be. For example, engineers who strongly

agree about requirements being

clear vs. those who disagree with it:

34%
Spend more time as planned (63% vs 47%)

32%
Are happier about dev practices (4.15 vs 3.14)

B E YO N D T H E D O R A F R A M E W O R K S 1 8

Ship Code Often

Shipping frequently displays solid correlations

with time spent on maintenance and

engineers’ overall happiness.

As seen in the data, teams who ship

multiple times a day vs. teams who

ship a few times per month:

• Wait for others 7.3% less of the time

• Spend 12% less time on maintenance (KTLO)

• Are 19.4% happier about their

own dev practices

The correlation between shipping frequency

and low maintenance hints at what we discussed

often, that more speed counterintuitively leads

to more stability, as it enables teams to recover

faster from mistakes.

At the same time, there is no significant

correlation between shipping fast and people’s

focus time, nor delivering projects on time.

We deploy frequently, but versioning can be tricky. We now
have completely seamless automatic deployments thanks
to a custom gitStream checker that enforces semantic
commits for automatic versioning during deployments.”

“

Jeff Williams
CTO, Contrast Security

Happy with
dev practices

Time spent
on KTLO

Multiple times a day

A few times a week

A few times a month

No need to
wait for others

Spend time
as planned

How often
deliver on time Enough focus time

3.6722% 3.21 49% 57% 3.09

3.3922% 3.13 52% 54% 3.27

3.0925% 2.99 50% 55% 3.02

B E YO N D T H E D O R A F R A M E W O R K S 1 9

LinearB Labs
Key-Takeaway: The longer the Deploy Time,
the higher the Change Failure Rate (CFR).

Deploy Time

The time from when a branch is merged

to when the code is released. Low Deploy

Time correlates to high Deploy Frequency.

Change Failure Rate (CFR)

The percentage of deploys

causing a failure in production.

When deployments take a significant

amount of time, it can be for a variety

of different reasons, namely:

• Larger deploy batches

increasing the risk of failure.

• The more time that passes after

code is merged, the higher the risk

of drift and conflict with other changes.

• Longer deploy cycles often mean the

developers writing the code are not directly

responsible for deploying it, a detachment

often correlated with lower sense of

ownership and resulting quality.

Elite

Strong

Fair

Needs Focus

CFR Benchmark

Needs FocusFairStrongElite

DEPLOY TIME P75 BENCHMARK

100%

80%

60%

40%

20%

0%

CFR vs. Deploy Time

P75 Benchmark

Distribution

3,026 Orgs
6,100,878 Pull Requests
167,437 Active Contributors
Time metrics in minutes
or hours, as noted

B E YO N D T H E D O R A F R A M E W O R K S 2 0

Short-Lived PRs

Data about how long it takes for a PR to get

approved is also interesting: there are no stark

differences when the time ranges between 1 hour

and 1 day, but performance is 1) significantly

better when PRs take minutes to get approved,

and 2) significantly worse when they take days.

Why is that? Our interpretation is the following:

• When a PR takes minutes — Whether it’s

because PRs are small, people pair on

reviews, or everyone stops in their tracks to

review code — there is little to no context

switch for the submitter, which leads to less

work-in-progress, tasks getting resolved

faster, and all kinds of benefits downstream.

• When a PR takes between 1 hour and

one day — The submitter needs to switch

to other tasks. At that point, whether the

review takes 1 hour or, say, 4, there isn’t

a lot of difference in terms of workflow.

• When a PR takes days — The workflow

degrades considerably as multiple

changes need to get batched together,

which creates more risk, more outages,

rework, and a worse feedback loop.

Spend time
as planned

Time spent
on KTLO

Few minutes

One hour

Half day

One day

Days

How often
deliver on time

21% 55% 64% 3.59 3.30 3.41

27% 47% 52% 3.50 3.26 3.07

24% 51% 58% 3.44 3.03 3.01

26% 54% 56% 3.47 3.44 3.21

22% 44% 49% 3.02 2.67 2.92

Happy with
dev practices Enough focus time No need to

wait for others

B E YO N D T H E D O R A F R A M E W O R K S 2 1

LinearB Labs

In the 2025 Software Engineering Benchmarks

Report, LinearB Labs found that larger PRs take

longer to approve. This is likely because larger

PRs require reviewers to dedicate more time

to comprehend the intent, scope, and potential

impact of each change. This broader scope often

leads to more detailed scrutiny and a higher

likelihood of finding issues or raising questions,

which in turn requires additional discussions,

clarifications, and, in some cases, iterations.

Larger PRs can also lead to a perception

of risk, as more extensive code changes

 carry a greater chance of introducing bugs

or conflicts, prompting reviewers to approach

with added caution and slower, more deliberate

consideration. Plus, the involvement of multiple

reviewers for cross-functional or cross-team

input can slow down the approval process as

more stakeholders need time to thoroughly

review and align on the changes.

Approve Time

The time from first comment to the first approval.

This metric, along with Merge Time, is a more

granular segment of Review Time.

Needs FocusFairStrongElite

PR SIZE P75 BENCHMARK

100%

80%

60%

40%

20%

0%

Elite

Strong

Fair

Needs Focus

Approve Time
P75 Benchmark

Approve Time

P75 vs. PR Size P75

Benchmark Distribution

3,026 Orgs
6,100,878 Pull Requests
167,437 Active Contributors
Time metrics in minutes
or hours, as noted

B E YO N D T H E D O R A F R A M E W O R K S 2 2

LinearB Labs 4 Proven Methods for
Reducing PR Approval Time

When it comes to unblocking your teams’ review
processes, here are some best practices we recommend:

Set team goals to author smaller PRs

When PRs contain fewer lines of code,

they present a less daunting undertaking

for the reviewer, and are far more

likely to get picked up quickly.

Assign the right reviewer

Leverage workflow automation to route PRs to

developers with the most relevant recent activity

and knowledge on the code being modified.

Reduce cognitive load

Provide vital context through labels for

estimated review time, sensitive code,

and deprecated components.

Get real-time alerts on PR activity

Setting up real-time notifications will provide

you with immediate context about your PRs,

including review assignments, approvals,

comments and change requests.

B E YO N D T H E D O R A F R A M E W O R K S 2 3

Track Engineering Metrics

Finally, tracking engineering productivity metrics

is positively correlated to most measures.

Teams who track and use

engineering metrics report:

• +17% time spent as planned (55% vs. 47%)

• +30% of projects delivered on time

(64% vs. 49%)

• +9.2% happiness about dev practices

(3.55 vs. 3.25)

Also, the percentage of teams who track

engineering metrics increased by 23% since

last year (where we asked a similar question

in a different survey), from 36.3% to 44.7%.

For teams that do not track metrics,

engineers are also decisively in favor

of trying, with 69.7% voting positively.

This leads us to the second part of this report.

Do you think your team should track some of those metrics, instead?

Yes, at least give
them a try

Yes, no brainer

Maybe, but no big deal

I don’t have an
opinion on this

No, I dont think metrics
would be useful

Absolutely not,
they are evil

43%

27%

20%

5%

5%

.6%

Spend time
as planned

25% 55% 64% 3.55 3.16 3.06

24% 47% 49% 3.25 3.04 3.15

Time spent
on KTLO

How often
deliver on time

Happy with
dev practices Enough focus time No need to

wait for others

Yes

No

B E YO N D T H E D O R A F R A M E W O R K S 2 4

The Role of Metrics

One of the core topics we wanted to explore in

this survey is how teams use data to improve.

As we mentioned in the intro, there is a lot of

talk around metrics frameworks, but very little

info about how to use them in practice.

We dedicated a good portion of the survey to

exactly this: asking qualitative questions about

how people use metrics in their daily work,

what benefits they report, and what challenges.

Here is what we learned:

Two levels of usage

Metrics are integrated in team processes

to drive improvement and supplement

decision making. You can divide processes

into two main categories: tactical ones,

on a weekly / bi-weekly basis, and strategic

ones, on a monthly / quarterly basis:

Tactical

Here are some responses from our survey

participants on how they use metrics

in sprint planning, retrospectives,

and other Agile ceremonies:

“Weekly review for planning and target

setting. Code reviews and improving

test coverage in daily scrum meet”

“We will monitor the commits and if it is

too less we will go in to each commit to

see what is going on. Also we enforced merge

requests mandatory before deploying to stage.

So we will know how the code is written”

“We set targets on certain team metrics. We use

individual metrics only in 1:1 conversations and

to back up/defend promo cases. We use sprint

metrics to monitor and adapt sprint processes,

and they’re looked at in every sprint review”

Strategic

Below you’ll find some quotes from our

survey participants on how they use metrics

in planning sessions, resource allocation

discussions, and performance reviews.

“Metrics mainly helped us communicate

expectations, challenges, successes and

stumbling grounds with stakeholders. Overall

satisfaction on both team and stakeholder side

has improved as a result. We are now

able to expose and address challenging

areas in a transparent and structured way.”

“Optimize staffing, increase team

efficiency, plan roadmap release dates”

1

2

B E YO N D T H E D O R A F R A M E W O R K S 2 5

Benefits

Teams report a variety of benefits that

can be grouped into two major categories:

Transparency

Metrics enable better communication with all

stakeholders, better collaboration and easier

alignment. Two of our survey respondents wrote:

Each team has the same cycle time target, if

not meet the manager will bring the topic

at the retrospective so we dig in the why.

“We have a quarterly retrospective to review

and adjust, and finally a yearly review to

also set up next challenges to solve.”

Enablement

Metrics allow engineering teams to surface

data about things that are hard to measure, so

stakeholders can identify their top-performing

teams and make data-driven decisions.

“[They helped us] find bottleneck in the

development flow. (eg: time it take

before a review start)”

“Spot trends over time, which we try to

understand to build improvements on”

Challenges

For many teams, adopting engineering metrics

is a journey not without its challenges.

Here are the most commonly addressed issues:

Interpretation

Numbers often come without enough context,

making it difficult to understand the big picture

behind the data. It can also take time to

understand how to translate metric

data into actionable improvements.

Unintended consequences

There are instances where metric

usage resulted in counterproductive

actions or “gaming the system”

“One issue with using metrics like DORA and

commit/day is that they can lead to unintended

behaviors, such as focusing on improving

numbers rather than genuinely enhancing

processes, potentially encouraging superficial

changes or excessive pressure on team

members, which can undermine the true goal […]”

Engineers also fear being micro-managed /

time-tracked through metrics, though

this seems a somewhat minor concern.

Alignment with business goals

It is not always trivial to connect technical

metrics to broader organizational goals.

“Balancing engineering and business metrics so

that engineering metrics support business goals

without becoming the target themselves”

B E YO N D T H E D O R A F R A M E W O R K S 2 6

The Pyramid of
Engineering Maturity

After we collected the insights above, we tried

to figure out how to turn these into practical

recommendations for engineering teams.

How can you improve your engineering maturity

through data? Where do you start?

After combing through the quantitative

and qualitative answers, we put

together a pyramid of maturity,

which is comprised of three levels:

Transparency

Intent

Speed

• Speed up code reviews
• Work in smaller batches
• Speed up alignment

• Allocate engineering
time intentionally

• Create good
requirements

• Set improvement goals

• Track metrics
• Discuss bottlenecks
• Improve communication

M
at

ur
it

y

Speed

Intent

Transparency

B E YO N D T H E D O R A F R A M E W O R K S 2 7

Transparency

Transparency is about being aware of what’s

going on, and creating the correct feedback

loop to discuss and design improvements.

Good communication, good retrospectives

and continuous improvement are the #1 benefit

that teams report from embedding data into

their processes — and are foundational

to everything the team does.

Even without setting specific targets, data

helps you figure out if you are trending in

the right direction, and if your initiatives

are making things better or worse.

Intent

Transparency enables intent.

The second clear trend that emerges out

from both our quantitative and qualitative

results is that teams that are intentional about

parts of their engineering process are rewarded.

Some of the clear wins they see are:

• Setting improvement goals for parts

of the engineering process.

• Creating better, participated requirements

for features and projects.

• Allocating engineering time across

a balanced portfolio of initiatives.

Speed

Speed is the tip of the pyramid.

Going fast is only helpful and sustainable

when you are going in the right direction

(intent) and you have a good feedback loop to

steer your practices if needed (transparency).

This is clear from looking both at the correlations

we found, and those we didn’t find: good teams

are fast, but fast teams are not necessarily good.

Shipping every day doesn’t magically turn

you into an elite engineering team —

but if you are an elite engineering team

chances are you are shipping every day.

What Now?
See where your team stacks up with a free
forever account and begin building your
engineering metrics program today!

Schedule a demo to discuss setting up
your own engineering metrics program.

Additional Data Reports
& Guides for R&D Leaders

2025 Software
Engineering
Benchmarks Report

The 2025 Software
Engineering Benchmarks
Report was created from a
study of 6.1+ M PRs from
3,000 engineering teams
across 32 countries.

Engineering Leader’s
Guide to Developer
Productivity

Discover how to quantify
developer productivity,
common blockers,
strategies to improve
it, and how and when
to present dev
productivity data.

Measuring Impact:
The GenAI Code
Report

This LinearB Research
Report breaks down how
to measure the impact of
Generative AI code across
the software delivery
lifecycle.

Download Report Download Guide Download Report

linearb.io

https://linearb.io/get-started
https://linearb.io/get-started
https://linearb.io/book-a-demo
https://linearb.io/resources/software-engineering-benchmarks-report
https://linearb.io/resources/engineering-leader-guide-to-accelerating-developer-productivity
https://linearb.io/resources/dora-report
http://linearb.io

