
2025 Software
Engineering
Benchmarks
Report
Created from a study of 6.1M+
PRs from 3,000 engineering
teams across 32 countries.

DATA REPORT

Table of
Contents
Introduction 3

2024 vs 2025: What’s New this Year? 5

Software Engineering Benchmarks 6

DORA Benchmarks 7

Engineering Investment Benchmarks 8

Predictability Benchmarks 10

Software Engineering Benchmarks by Org Size 13

Metrics Definitions 16

Insights 18

Bot-Generated PR Research 37

Conclusion: What Now? 41

Appendix 42

NEW

2025 Software Engineering Benchmarks Report 3

We’re thrilled to be publishing the fourth annual edition of our 2025
Software Engineering Benchmarks Report! This year, we’ve focused our
research on two key areas of Software Engineering Intelligence (SEI):
Developer Experience and Developer Productivity, as defined below.

Introduction

Balancing the relationship between these priorities in your engineering
organization is crucial but often misunderstood. A lot of software teams
feel pressured to prioritize DevProd over DevEx due to tight deadlines
and limited resources, thinking they must prioritize short-term output
over developer well-being. There’s also a misconception that investing
in DevEx — such as improving tools or enhancing workflows — will
take effort away from new value delivery, when in fact, it often leads
to sustained Developer Productivity gains. This mindset overlooks
how a better DevEx reduces developer toil and burnout, thereby
creating a more resilient, and ultimately, productive team.

At LinearB, we recommend taking an approach that balances both
outcomes. To achieve both results, you need visibility into what’s
working, and what isn’t. But visibility without context doesn’t solve
your problem — you need benchmarks to answer essential questions
like: ‘Is my team’s 7-day Cycle Time good or bad?’ and more existential
ones like: ‘Am I running a healthy engineering organization?’ That’s why
we studied the work of over 3,000 dev teams and 6.1 million pull requests
(PRs) to develop industry-standard engineering benchmarks – to help
you contextualize your metrics, see how your teams are stacking
up against the industry and meet improvement goals.

Developer Experience (DevEx)

A development team’s overall morale and engagement
when interacting with their organization’s tools,
processes and environments.

Developer Productivity (DevProd)

How effectively and efficiently developers can complete
meaningful tasks quickly and with minimal waste.

3,000+
TEAMS

DATA SOURCED FROM

6.1M+
PRS

32
COUNTRIES

2025 Software Engineering Benchmarks Report 4

We’ve organized the data into the following
levels of performance for each metric:

Organization01

In this report, you’ll find all metrics
organized by the following criteria:

Size02

Geography03

Industry04

It’s important to note that all data has been anonymized and
normalized. For aggregation, we used the P75 (75th percentile)
calculation. P75 is less sensitive to extreme values or outliers
in the data, providing a robust and reliable measure.

We hope that you enjoy these fascinating new insights into
how engineering teams work, set goals and achieve success.

Yishai Beeri
CTO, LinearB

TOOLTIP

ELITE Top 10% of the LinearB community

GOOD Top 30% of the LinearB community

FAIR Top 60% of the LinearB community

NEEDS FOCUS Bottom 40% of the LinearB community

2025 Software Engineering Benchmarks Report 5

NEW DEVPROD AND DEVEX METRICS

Approve Time

Measures the time from
the first comment on a
pull request to when the
PR is first approved.

Merge Time

Measures the time
from first approval to
when the PR is merged.

PR Maturity

The ratio between the total changes
added to a PR branch after the PR
was published and the total changes in
the PR. Example: A PR was merged with
a total of 100 lines of code. 20 lines were
modified since the PR was published.
In this case, PR Maturity is 80% (0.8).

Why We’re Including Them

• Approve Time and Merge Time split Review Time into two sub
segments with distinct dynamics — use this additional level of detail
to more accurately diagnose your code review bottlenecks.

• PR Maturity gives a unique view into the impact of code reviews,
highlighting ineffective review (very high PR Maturity, PRs go nearly
unchanged through review), as well as premature review (low PR
Maturity, more work should be done by the developers to get the
PRs to a better state prior to taking scarce review cycles).

NEW PROJECT MANAGEMENT (PM) HYGIENE METRICS

Issues Linked
to Parents

The percentage
of issues or tickets
with active work that
are linked to a parent
issue, such as an epic
or story. This does
not include subtasks.

Branches Linked
to Issues

The percentage of
code branches that
contain a reference
to specific PM issues,
providing visibility
into the alignment of
code changes with
planned tasks.

In Progress Issues
with Estimation

The proportion of
ongoing PM tasks that
have time or effort
estimates assigned.

Why We’re Including Them

• Both Issues Linked to Parents and Branches Linked to Issues
are metrics that engineering teams can use as proxies for
traceability. Optimizing for these metrics will make it easier
for teams to monitor development progress and ensure
that actual dev work is tied to defined, planned work items.

• Tracking both In Progress Issues with Estimation & In Progress
Issues with Assignees helps teams ensure effective planning
and ownership for work items, aiding in predictability
accountability and effective workload management.

In Progress Issues
with Assignees

The percentage of
active PM tasks that
have a designated team
member responsible
for completing them.

This year’s report includes 7 brand-new metrics, plus our sample
size has doubled from last year, with our analysis now spanning
3,000+ teams, 167k+ contributors and 6.1+ million PRs.
We’re also including new research on bot-generated PRs.

2024 vs 2025:
What’s New this Year?

2025 Software Engineering Benchmarks Report 6

Category Metric Elite Good Fair Needs Focus

DevEx

Coding Time (hours) < 1 1 - 4 5 - 23 > 23

Pickup Time (mins/hours) < 75 mins 75 mins - 5 hours 6 - 16 > 16

Approve Time (hours) < 10 10 - 22 23 - 41 > 41

Merge Time (hours) 2 2 - 4 5 - 17 > 17

Review Time (hours) < 3 3 - 13 14 - 24 > 24

Deploy Time (hours) < 6 6 - 95 96 - 248 > 248

Merge Frequency
(per dev/week) > 2.25 2.25 - 1.35 1.34 - 0.75 < .75

PR Maturity (%) > 91% 91 - 84% 83 - 77% < 77%

DORA

Cycle Time (hours) < 26 26 - 80 81 - 167 > 167

Deploy Frequency
(per service) > 1 1 - 0.5 .4 - 0.15 < .15

Change Failure Rate (%) < 1% 1-4% 5-23% > 23%

MTTR (hours) < 6 6 - 11 12 - 30 > 30

Predictability

PR Size (code changes) < 85 85 - 138 139 - 209 > 209

Refactor Rate (%) < 11% 11 - 16% 17 - 20% > 20%

Rework Rate (%) < 3% 3 - 5% 6 - 7% > 7%

Capacity Accuracy (%) 85 - 115% 75 - 85% or 115 - 125% 70 - 75% or 115 - 130% < 70% or > 130%

Planning Accuracy (%) > 80% 80% - 65% 64% - 45% < 45%

PRs Without Review (%) < 0.7% .7 - 3% 4 - 13% > 13%

PM Hygiene

Issues Linked to Parents
(%) > 91% 91 - 72% 71 - 62% < 62%

Branches Linked to Issues
(%) > 81% 81 - 64% 63 - 51% < 51%

In Progress Issues
with Estimation (%) > 59% 59 - 32% 31 - 20% < 20%

In Progress Issues
with Assignees (%) > 97% 97 - 86% 85 - 80% < 80%

Software Engineering Benchmarks Benchmarks by Org | 3,026 Orgs | 6,100,878 Pull Requests | 167,437
Active Contributors | Time metrics in minutes or hours, as noted

2025 Software Engineering Benchmarks Report 7

Category Metric Elite Good Fair Needs Focus

DORA

Cycle Time (hours) < 26 26 - 80 81 - 167 > 167

Deploy Frequency
(per service)

> 1 1 - 0.5 4 - 0.15 < 1.5

MTTR (hours) < 6 6 - 11 12 - 30 > 30

Change Failure Rate (%) < 1% 1 - 4% 5 - 23% > 23%

Cycle Time

The time it takes for a single
engineering task to go through
the different phases of the
delivery process from ‘code’ to
‘production’.

Deploy Frequency

Measures how often code is
released. Elite Deploy Frequency
represents a stable and healthy
continuous delivery pipeline.

Mean Time to Recovery
(MTTR)

The average time it takes to
restore from a failure of the
system or one of its components.

Change Failure Rate (CFR)

The percentage of deploys
causing a failure in production.

DORA Benchmarks Benchmarks by Org | 3,026 Orgs | 6,100,878 Pull Requests | 167,437
Active Contributors | Time metrics in minutes or hours, as noted

2025 Software Engineering Benchmarks Report 8

55% New Value 15% DevEx

20% Feature
Enhancement

10% Keeping
the Lights On

Engineering Investment Benchmarks

Benchmarks by Org | 3,026 Orgs | 6,100,878 Pull Requests
| 167,437 Active Contributors

The Engineering Investment Benchmarks provide a high-level view
into where and how engineering teams are investing their resources.
Unlike our Metrics Benchmarks, you’ll see the Investment Benchmarks
do not include proficiency levels. Instead, these benchmarks represent
the average investment split across many organizations.

We recommend using these categories and investment
percentages as a starting point when aligning R&D
resource investment with the board and executive team.

Engineering teams can use the Investment
Benchmarks to help answer questions like:

• Is our Investment Profile very different from what’s
typical — and if so, is that difference serving us?

• Are we investing below average in New Value?
Or above average in Keeping the Lights On?

• Are we balancing our investment in New Value
with our investment in the tools and processes
that allow New Value to build more effectively?

Investment Profile

2025 Software Engineering Benchmarks Report 9

CATEGORY BREAKDOWN

Developer
Experience

The actions performed to
improve the productivity
of development teams
and their overall
experience.

This might include
activities such as:

• Code restructuring

• Testing automation

• Better developer
tooling

• Working to reduce
the size of the KTLO
bucket in the future

Feature
Enhancements

The actions taken to
enhance features or
deliver a product that
ensures customer
satisfaction.

This might include
activities such as:

• Customer requested
improvements

• Improved
performance
& utilization

• Improved product
reliability or
security, etc.

• Iterations to
improve adoption/
retention/quality

New Value

The actions performed
to invest in new features
that increase revenue and
growth by new customer
acquisition or expansion.

This might include
activities such as:

• Adding a new feature

• Implementing
roadmap work, etc.

• Supporting a new
platform or partner
application

KTLO (Keeping
the Lights On)

The minimum tasks a
company is required to
perform in order to stay
operational on a daily
level, while maintaining
a stable level of service.

This might include
activities such as:

• Maintaining current
security posture

• Service and ticket
monitoring &
troubleshooting

• Maintaining current
levels of service
uptime, etc.

2025 Software Engineering Benchmarks Report 10

Capacity Accuracy
Measures how many issues (or story points) a team completed in an iteration
(planned or unplanned) compared to the amount planned for that iteration.

Capacity Accuracy is a unique benchmark that is based
on project data. It helps answer these questions:

• “Are teams taking on an amount of work that they can
reasonably accomplish in an iteration?” Low Capacity
Accuracy may point to over-commitment during planning.

• Are teams “playing it safe” and under-committing to always
hit the mark? This would lead to high Capacity Accuracy.

• Do we have a good grasp of the team’s work capacity
and can predictably deliver that capacity sprint over sprint?
Unstable Capacity Accuracy that swings from low to high
shows that the team hasn’t found its pace yet and cannot
predict the amount of work they can deliver.

Predictability Benchmarks

7.1% Potential Under Commit

6.5% Potential Over Commit

16.5% Ideal Range

69.9% Under Commit

IDEAL RANGE

UNDER COMMIT

POTENTIAL UNDER COMMIT

POTENTIAL OVER COMMIT

85%-115%

ABOVE 130%

116%-130%

70%-84%

Actual Distribution for Capacity Accuracy

2025 Software Engineering Benchmarks Report 11

Planning Accuracy
The ratio of planned work vs. what is actually delivered during a sprint or iteration.
High Planning Accuracy signals a high level of predictability and stable execution.

In a single “accuracy score” you’ll know if your teams are
scoping iterations well, whether they’re completing their
tasks and how unplanned work is affecting execution.

The calculation is based on the following types of work:

• Planned: Story points or issues added before or
within 24 hours of a sprint beginning.

• Added: Story points or issues added and
completed after the sprint begins.

• Completed: Planned story points
or issues completed in a sprint.

• Carryover: Planned but not
completed story points or issues.

In rare cases, teams may have a Planning Accuracy that is too
high (>95%), and a Capacity Accuracy that is too high (>130%).
That means they aren’t taking on enough planned work – which
should be a priority for improvement initiatives.

Predictability Benchmarks

To begin accurately forecasting project delivery and determine if
timelines can be moved up, we recommend tracking quality and
predictability metrics like Planning Accuracy and Capacity Accuracy.

In our research, we found that over half (69.9%) of engineering
projects under-commit their iteration plans, and that less
than a fifth (only 16.5%) were in the ideal range.

DevEx and DevProd metrics can be very useful early indicators for
predictable delivery. Tracking and improving metrics such as PR Size,
Code Rework and Cycle Time can help teams improve how they make
and keep accurate promises to the business about delivery timelines.

ELITE > 80%

GOOD

FAIR

NEEDS FOCUS

80% - 65%

64% - 45%

< 45%

2025 Software Engineering Benchmarks Report 12

Since we started tracking
predictability metrics, we’re
getting things done faster. It’s
easy to see where our projects
are at, who’s doing what, and
what needs attention. No more
endless meetings and confusing
email chains. Everything’s
right there in one place.”

“

Leif Asmund M.
VP of Engineering, Seven Peaks Software

2025 Software Engineering Benchmarks Report 13

Category Metric Elite Good Fair Needs Focus

DevEx

Coding Time (hours) < 2 2 - 9 10 - 28 > 28

Pickup Time (mins/hours) < 78 mins 78 mins - 4 hours 5 - 15 > 15

Approve Time (hours) < 10 10 - 22 23 - 31 > 32

Merge Time (mins/hours) < 65 mins 65 mins - 4 hours 5 - 14 > 14

Review Time (hours) < 3 3 - 10 11 - 22 > 22

Deploy Time (hours) < 23 23 - 165 166 - 300 > 300

Merge Frequency
(per dev/week) > 1.70 1.70 - 0.95 0.94 - 0.5 < 0.5

PR Maturity (%) > 92% 92 - 87% 86 - 80% < 80%

DORA

Cycle Time (hours) < 27 27 - 97 98 - 174 > 174

Deploy Frequency
(per service) > 0.6 0.6 - 0.25 0.24 - 0.1 < 0.1

Change Failure Rate (%) < 1% 1 - 5% 6 - 30% > 30%

MTTR (hours) < 6 6 - 12 13 - 50 > 50

Predictability

PR Size (code changes) < 91 91 - 138 139 - 208 > 208

Refactor Rate (%) < 11% 1 - 15% 16 - 20% > 20%

Rework Rate (%) < 4% 4 - 5% 6 - 7% > 7%

Software Engineering
Benchmarks By Org Size

3,026 Orgs | 6,100,878 Pull Requests | 167,437 Active Contributors |
Time metrics in minutes or hours, as noted

ENTERPRISE
1000+ Employees

2025 Software Engineering Benchmarks Report 14

Software Engineering
Benchmarks By Org Size

3,026 Orgs | 6,100,878 Pull Requests | 167,437 Active Contributors |
Time metrics in minutes or hours, as noted

SCALE-UP
200-1000 Employees

Category Metric Elite Good Fair Needs Focus

DevEx

Coding Time (hours) < 3 3 - 6 7 - 28 > 28

Pickup Time (mins/hours) < 65 mins 65 mins - 5 hours 6 - 17 > 17

Approve Time (hours) < 15 15 - 23 24 - 44 > 44

Merge Time (mins/hours) < 75 mins 75 mins - 4 hours 5 - 18 > 18

Review Time (mins/hours) < 21 mins 21 - 56 mins 57 mins - 3 hours > 3

Deploy Time (hours) < 16 16 - 103 104 - 265 > 265

Merge Frequency
(per dev/week) > 1.85 1.85 - 1.05 1.04 - 0.6 < 0.6

PR Maturity (%) > 90% 90 - 83% 82 - 76% < 76%

DORA

Cycle Time (hours) < 47 47 - 93 94 - 172 > 172

Deploy Frequency
(per service) > 0.8 0.8 - 0.4 0.39 - 0.15 < 0.15

Change Failure Rate (%) < 1% 1 - 3% 4 - 15% > 15%

MTTR (hours) < 8 8 - 12 13 - 35 > 35

Predictability

PR Size (code changes) < 89 89 - 135 136 - 197 > 197

Refactor Rate (%) < 12% 12 - 16% 17 - 21% > 21%

Rework Rate (%) < 4% 4 - 5% 6 - 7% > 7%

2025 Software Engineering Benchmarks Report 15

Software Engineering
Benchmarks By Org Size

3,026 Orgs | 6,100,878 Pull Requests | 167,437 Active Contributors |
Time metrics in minutes or hours, as noted

STARTUP
0-200 Employees

Category Metric Elite Good Fair Needs Focus

DevEx

Coding Time (hours) < 1 1 - 4 5 - 22 > 22

Pickup Time (mins/hours) < 88 mins 88 mins - 5 hours 6 - 17 > 17

Approve Time (hours) < 12 12 - 21 22 - 39 > 39

Merge Time (mins/hours) < 77 mins 77 mins - 3 hours 4 - 17 > 17

Review Time (hours) < 3 3 - 13 14 - 24 > 24

Deploy Time (hours) < 5 5 - 95 96 - 245 > 245

Merge Frequency
(per dev/week) > 2.30 2.30 - 1.4 1.39 - 0.85 < 0.85

PR Maturity (%) > 91% 91 - 84% 83 - 77% < 77%

DORA

Cycle Time (hours) < 26 26 - 78 79 - 171 > 171

Deploy Frequency
(per service) > 1.1 1.1 - 0.5 0.49 - 0.15 < 0.15

Change Failure Rate (%) < 1% 1 - 5% 6 - 25% > 25%

MTTR (hours) < 6 6 - 11 12 - 26 > 26

Predictability

PR Size (code changes) < 90 90 - 142 143 - 214 > 214

Refactor Rate (%) < 11% 11 - 16% 17 - 21% > 21%

Rework Rate (%) < 3% 3 5% 6 - 7% > 7%

2025 Software Engineering Benchmarks Report 16

Metrics Definitions

DEVEX METRICS

PR Size

The number of code lines modified in a
pull request. Smaller pull requests are
easier to review, safer to merge and
correlate to a lower Cycle Time.

Coding Time

The time it takes from the first commit
until a pull request is published. Short
Coding Time correlates to low WIP,
small PR Size and clear requirements.

Pickup Time

The time a pull request waits for
someone to start reviewing it.
Low Pickup Time represents strong
teamwork and a healthy review process.

Approve Time

The time from first comment to
the first approval. This metric,
along with Merge Time, is a more
granular segment of Review Time.

Review Time

The time it takes to complete a code
review and get a pull request merged.
Low Review Time represents strong
teamwork and a healthy review process.

Merge Time

The time from the first approval to merge.
This metric, along with Approve Time, is a
more granular segment of Review Time.

Deploy Time

The time from when a branch is merged
to when the code is released. Low Deploy
Time correlates to high Deploy Frequency.

Merge Frequency

The total number of pull requests
or merge requests merged
by a team over a period of time.

PR Maturity

The ratio between the total changes added
to a PR branch after the PR was published
and the total changes in the PR.

Rework Rate

The amount of changes made to code
that is less than 21 days old. High Rework
rates signal code churn and is a
leading indicator of quality issues.

Refactor Rate

Refactored work represents changes
to legacy code. LinearB considers
code “legacy” if it has been in
your codebase for over 21 days.

2025 Software Engineering Benchmarks Report 17

Metrics Definitions

PREDICTABILIT Y METRICS

Planning Accuracy

The ratio of planned work vs. what
is actually delivered during a sprint
or iteration. High Planning Accuracy
signals a high level of predictability
and stable execution.

Capacity Accuracy

Capacity Accuracy measures all
completed (planned and unplanned)
work as a ratio of planned work.

PROJECT MANAGEMENT (PM) HYGIENE METRICS

Issues Linked to Parents

The percentage of issues or tickets within
your PM instance that are linked to a
parent issue, such as an epic or story.
This does not include subtasks.

Branches Linked to Issues

The percentage of code branches that
contain a reference to specific PM issues,
providing visibility into the alignment
of code changes with planned tasks.

In Progress Issues
with Estimation

The proportion of ongoing PM tasks that
have time or effort estimates assigned.

In Progress Issues
with Assignees

The percentage of active PM tasks
that have a designated team member
responsible for completing them.

DORA METRICS

Cycle Time

The time it takes for a single
engineering task to go through the
different phases of the delivery
process from ‘code’ to ‘production’.

Deploy Frequency

A measurement of how often code
is released. Elite Deploy Frequency
represents a stable and healthy
continuous delivery pipeline.

Mean Time to Recovery (MTTR)

The average time it takes to
restore from a failure of the
system or one of its components.

Change Failure Rate (CFR)

The percentage of deploys
causing a failure in production.

Insights PR Lifecycle Insights 19

PM Hygiene Insights 24

DORA Insights 27

Quality Insights 30

Org Size Insights 33

DISCLAIMER

It’s important to note that correlation does not indicate
causation. However, the insights this data exposes align
closely with the qualitative and anecdotal research
we’ve gathered from LinearB users over the past year.

2025 Software Engineering Benchmarks Report 19

PR Size is the most
significant driver of velocity
across the PR lifecycle.

Insight No. 1

Larger PRs wait longer to get
picked up for review.

Insight No. 2

Larger PRs have longer Cycle Times.

Insight No. 3

Larger PRs take longer to approve.

Insight No. 4

PRs that wait longer for the review to start
also take longer from approval to merge.

KEY TAKEAWAY

PR Lifecycle
Insights

SUMMARY

Insight No. 5

Larger PRs are modified
more heavily during review.

2025 Software Engineering Benchmarks Report 20

PR Size plays a critical role in how quickly code is shipped,
since this metric directly impacts each subsequent phase of
the development and review process, from PR pickup to merge.
When pull requests are small, they tend to be less complex and lower
risk, allowing reviewers to quickly understand, approve and merge
changes. Conversely, larger PRs often require more in-depth reviews
due to the complexity and higher likelihood of bugs, leading to lengthy
feedback loops that have a compounding effect on velocity.

INSIGHT NO. 1

Larger PRs wait longer to get picked up for review.

When PRs contain many lines of code, they present a more daunting
task for the reviewer, and are thus more likely to wait longer to get
picked up. Additionally, larger PRs often involve multiple files, modules
or systems, raising the potential for unintended side effects, which
increases the probability of error. This complexity can also increase
cognitive load, as reviewers need to take more time to understand how
these changes integrate with existing code and detect possible bugs.
Large PRs increase the chance of needing reviews from someone outside
of the author’s immediate team — another possible cause for delays.

PR Lifecycle Insights Analysis

50

40

30

20

10

0

P
IC

K
U

P
 T

IM
E

P
75

PR SIZE P75

0 100 200 300 400 500

KDE plot estimates probability density of the two
variables, highlighting areas of high density.

Note the two
distinct bands
showing PRs
picked up on the
same day they
were issued
vs. PRs that
were left until
the next day.

Pickup Time P75 vs. PR Size P75

Pickup Time P75 vs. PR Size P75

Scatter plot shows
relationship between
PR Size P7 and
Pickup Time P75.

The red line connects
sorted data points
which is more fitting
for Spearman
correlation.

P
IC

K
U

P
 T

IM
E

P
75

PR SIZE P75

0 100 200 300 400

0

10

20

30

40
PR Size is the most significant driver of velocity across the PR lifecycle.

KEY TAKEAWAY

2025 Software Engineering Benchmarks Report 21

INSIGHT NO. 2

Larger PRs have longer Cycle Times.

Cycle Time
The time it takes for a single engineering task to go through the
different phases of the delivery process from ‘code’ to ‘production’.

Larger PRs are the bane of fast moving teams. Harder to review,
difficult to merge, and riskier to deploy, developers actively
shy away from reviewing these, and every step in the
delivery chain becomes longer and more drawn out.

INSIGHT NO. 3

Larger PRs take longer to approve.

Approve Time
The time from first comment to the first approval. This metric,
along with Merge Time, is a more granular segment of Review Time.

When it comes to larger PRs, reviewers must dedicate more
time to comprehend the intent, scope and potential impact
of each change. This broader scope often leads to more
detailed scrutiny and a higher likelihood of finding issues or
raising questions, which in turn requires additional discussions,
clarifications, and, in some cases, iterations. Larger PRs can also
lead to a perception of risk, as more extensive code changes
carry a greater chance of introducing bugs or conflicts, prompting
reviewers to approach with added caution and slower, more
deliberate consideration. Plus, the involvement of multiple
reviewers for cross-functional or cross-team input can
slow down the approval process as more stakeholders
need time to thoroughly review and align on the changes.

Cycle Time Mean vs. PR Size Mean

Approve Time P75 vs. PR Size P75
Benchmark Distribution

Needs FocusFairStrongElite

PR SIZE P75 BENCHMARK

Elite

Strong

Fair

Needs Focus

Approve Time
P75 Benchmark

100%

80%

60%

40%

20%

0%

Hexbin plots display
the density of points
in hexagonal bins
to visualize the
concentration of data.

16

14

12

8

6

4

2

0

10

C
Y

C
LE

 T
IM

E
M

EA
N

FR
EQ

U
EN

C
Y

PR SIZE MEAN

0 500 1000 1500 2000 2500 3000 3500 4000

0

50

100

150

200

250

300

350

2025 Software Engineering Benchmarks Report 22

INSIGHT NO. 4

PRs that wait longer for the review to start
also take longer from approval to merge.

Merge Time
The time from the first approval to merge. This metric, along with
Approve Time, is a more granular segment of Review Time.

Pickup Time
The time a pull request waits for someone to start reviewing it. Low Pickup
Time represents strong teamwork and a healthy review process.

Longer Pickup Times often lead to extended Merge Times because
the initial delay in reviewing a PR can disrupt workflow momentum.
While this may seem like a foregone conclusion, it’s important to
understand the impact of longer PR lifecycle and context switches.
When a PR sits idle waiting to be reviewed, it becomes increasingly
likely that other changes in the codebase will create conflicts or alter
dependencies, requiring the developer to revisit and rework the code
before merging. This delay can result in a cascade of further reviews
and adjustments, especially if updates from other branches must be
incorporated to ensure compatibility. Additionally, the psychological
effect of a delayed pickup can reduce urgency around completing the
PR, which further slows down the review and merge stages. A lack of
early feedback also limits opportunities to catch issues quickly, often
resulting in last-minute adjustments that increase overall Merge Time.

100

80

60

40

20

0

-10 10 20 30 40 50 60 700

M
ER

G
E

T
IM

E
M

EA
N

P ICKUP TIME MEAN

This 2KDE plot estimates probability density of the
two variables, highlighting areas of high density.

2KDE Plot of Merge Time Mean vs. Pickup Time Mean

2025 Software Engineering Benchmarks Report 23

INSIGHT NO. 5

Larger PRs are modified more heavily during review.

In small PRs, even a minor change added during the code
review can result in a low PR Maturity Ratio (recall PR
Maturity measures the ratio of code line modified after the
PR was published). However, we see that small PRs tend
to have a higher PR Maturity and require fewer modifications.

Some of this can be chalked up to skipped or rubber-stamped
reviews for small PRs. Further, splitting large PRs into separate
small ones is a hallmark of upfront planning and strong developers
 — and these will also tend to create more mature PRs.

When it comes to unblocking
your team, here are some best
practices we recommend:

TOOLTIP 4 PROVEN METHODS FOR ELIMINATING BOTTLENECKS IN YOUR PR LIFECYCLE

1. Assign the right reviewer

Leverage workflow
automation to route
PRs to developers with
the most relevant recent
activity and knowledge
on the code being modified.

2. Set team goals to
author smaller PRs

When PRs contain fewer
lines of code, they present
a less daunting undertaking
for the reviewer, and are
far more likely to get
picked up quickly.

3. Get real-time alerts
on PR activity

Setting up real-time
notifications will provide
you with immediate context
about your PRs, including
review assignments,
approvals, comments
and change requests.

4. Reduce cognitive load

Provide vital context through
labels for estimated review
time, sensitive code, and
deprecated components.

PR Size P75 vs. PR Maturity Ratio

PR MATURITY RATIO

1750

1500

1250

1000

750

500

250

0

P
R

 S
IZ

E
P

75

0.2 0.4 0.6 0.8 1.0

2025 Software Engineering Benchmarks Report 24

Poor PM hygiene is
directly correlated
with shorter cycles.

Insight No. 1

When the percentage of Branches
not Linked to Issues is higher,
the shorter the Coding Time.

Insight No. 2

When the percentage of Branches
not Linked to Issues is higher,
the shorter the Review Time.

Insight No. 3

When the percentage of Branches
not Linked to Issues is higher,
the shorter the Merge Time.

KEY TAKEAWAY

PM Hygiene
Insights

SUMMARY

2025 Software Engineering Benchmarks Report 25

Paradoxically, poor PM hygiene may correlate with shorter cycles.
For many teams, moving fast is synonymous to forgoing process
and formal overhead. While this may be the right mode for some, care
must be taken to track whether this approach also entails superficial
reviews and reduced quality. Further, the reduced of visibility and
tracking in the Project Management systems often leads to impaired
predictability — a trait businesses often value more than raw speed.

INSIGHT NO. 1

When the percentage of Branches not Linked to
Issues is higher, the shorter the Coding Time.

When a high percentage of branches are not linked to issues in your
PM instance, Coding Time may initially be faster because developers
can proceed with less formal overhead. Without having to create, link
or update PM tickets, developers have fewer administrative tasks,
allowing them to focus solely on coding and rapidly pushing changes.
This lack of structure can enable more immediate responses to changes
or requests, fostering an environment of quick iterations and minimal
delays. However, this perceived efficiency often comes at a cost;
without proper issue linkage, the work may lack essential context
and alignment with broader project goals, potentially leading
to miscommunication and technical debt down the line.

PM Hygiene Insights Analysis

Poor PM hygiene is directly correlated with shorter cycles.

KEY TAKEAWAY

Coding Time P75 vs. Unlinked PRs Percentage
Benchmark Distribution

0%

20%

40%

60%

80%

100%

UNLINKED PRS PERCENTAGE BENCHMARK

Elite Needs Focus

Fair Strong

Coding Time P75 Benchmark

Needs FocusFairStrongElite

2025 Software Engineering Benchmarks Report 26

INSIGHT NO. 2

When the percentage of Branches not Linked to
Issues is higher, the shorter the Review Time.

Review Time may initially be faster when the percentage of branches
not linked to your PM tool is higher because reviewers might adopt a
more cursory approach, given the lack of documented expectations.
In this scenario, reviewers may focus solely on the technical aspects
of the code without delving into the broader business goals, acceptance
criteria or dependencies that typically accompany linked issues.
This streamlined, code-only focus can lead to quicker evaluations,
as there are fewer formal considerations to navigate and potentially
fewer stakeholders involved. Additionally, the absence of a linked
issue may create implicit pressure to expedite the review process, as
reviewers have limited guidance on how deeply to assess the changes,
leading to faster, though potentially less thorough, review cycles.

INSIGHT NO. 3

When the percentage of Branches not Linked to
Issues is higher, the shorter the Merge Time.

Without the context provided by linked issues in your PM
instance, merges may be treated as lower-stakes operations
with minimal oversight, leading to faster integration into the main
codebase. This unstructured approach can reduce the time spent
on more detailed reviews and verification steps that would otherwise
align code changes with business goals. However, this speed comes
with a trade-off; while Merge Time is reduced, it may result in less
stable integrations, potentially introducing unforeseen issues
or conflicts that require additional Rework in the future.

Review Time P75 vs. Unlinked PRs Percentage
Benchmark Distribution

0%

20%

40%

60%

80%

100%

UNLINKED PRS PERCENTAGE BENCHMARK

Needs FocusFair

Elite Needs Focus

Fair Strong

Review Time P75 Benchmark

StrongElite

2025 Software Engineering Benchmarks Report 27

Organizations with longer
Cycle Times have a higher
rate of failures in production.

Insight No. 1

The longer the Cycle Time, the higher
the Change Failure Rate (CFR).

Insight No. 2

The longer the Deploy Time, the higher
the Change Failure Rate (CFR).

KEY TAKEAWAY

DORA
Insights

SUMMARY

2025 Software Engineering Benchmarks Report 28

When delivery cycles are longer, every deployment to production
tends to be larger, more complex, and more prone to quality issues.
Contrary to common instinct, and much like riding a bicycle, going faster
actually helps stability. Teams that ship many small changs in short cycles
have lower risk in each deploy and can fix production issues faster.
They have typically also developed more robust automated testing
capabilities that allow them to move faster in the first place —
contributing to overall stability and reducing production failures.

INSIGHT NO. 1

The longer the Cycle Time, the higher the Change Failure Rate (CFR).

Longer Cycle Times often stem from large or intricate code
changes that involve multiple revisions, dependencies, or significant
Rework.This extended process makes it difficult for developers to keep
track of concurrent changes in the codebase, which increases the
likelihood of conflicts, outdated code and dependencies that are prone
to break. The delay also means that feedback loops are longer, which
can result in missed opportunities to catch errors early, leading to more
significant issues in production. Consequently, as Cycle Time increases,
so too does the complexity of maintaining a stable, conflict-free
codebase, contributing to a higher Rate of Change Failures.

DORA Insights Analysis

Organizations with longer Cycle Times
have a higher rate of failures in production.

KEY TAKEAWAY

CFR vs. Cycle Time P75 Benchmark Distribution

0%

20%

40%

60%

80%

100%

CYCLE TIME P75 BENCHMARK

Needs Focus

Elite Needs Focus

Fair Strong

CFR Benchmark

FairStrongElite

2025 Software Engineering Benchmarks Report 29

INSIGHT NO. 2

The longer the Deploy Time, the higher the Change Failure Rate (CFR).

Deploy Time
The time from when a branch is merged to when the code is released.
Low Deploy Time correlates to high Deploy Frequency.

CFR (Change Failure Rate)
The percentage of deploys causing a failure in production.

When deployments take a significant amount of time,
it can be for a variety of different reasons, namely:

• Larger deploy batches increasing the risk of failure.

• The more time that passes after code is merged,
the higher the risk of drift and conflict with other changes.

• Longer deploy cycles often mean the developers writing the code
are not directly responsible for deploying it, a detachment often
correlated with lower sense of ownership and resulting quality.

Here are some best
practices we recommend
to dev teams looking to
improve their DORA Metrics:

TOOLTIP 3 WAYS TO START IMPROVING YOUR DORA METRICS

1. Set expectations with PR Labels

Using automated labels to
categorize PRs (e.g. bug fix, high risk,
documentation) can help reviewers
prioritize the most important work
and plan their days accordingly.

2. Request changes on
deprecated APIs

Set up automated alerts whenever
a PR includes use of a deprecated
API. This allows engineering
managers to encourage best
practices while remaining hands off.

3. Reduce cognitive load
with Idle PR Alerts

Cut dev idle time by 60%
with real-time pull request alerts
to nudge your team when a PR has
been sitting idle for 2 days or more.

CFR vs. Deploy Time P75 Benchmark Distribution

Needs FocusFairStrongElite

DEPLOY TIME P75 BENCHMARK

Elite

Strong

Fair

Needs Focus

CFR Benchmark

100%

80%

60%

40%

20%

0%

2025 Software Engineering Benchmarks Report 30

A higher PR Maturity
ratio correlates with
higher velocity.

Insight No. 1

 The higher the PR Maturity Ratio,
the higher the Merge Frequency.

Insight No. 2

The higher the PR Maturity Ratio,
the shorter the Pickup Time.

KEY TAKEAWAY

Quality
Insights

SUMMARY

2025 Software Engineering Benchmarks Report 31

The maturity of a team’s PRs serves as a strong indicator for how
efficiently code moves through the development pipeline. When
developers take the time to ensure PRs are thoroughly prepared before
publishing them, they reduce the delays caused by fixes and additional
reviews. Since every handoff between developers and reviewers requires
an expensive context switch, anything the PR author can do upfront while
creating the PR is almost always more efficient than having a reviewer do
it. One caveat is when PR Maturity is too high — signaling that the review
process is not effective as it doesn’t cause PRs to be modified.

INSIGHT NO. 1

The higher the PR Maturity Ratio, the higher the Merge Frequency.

PR Maturity
The ratio between the total changes added to a PR branch
after the PR was published and the total changes in the PR.

A higher PR Maturity Ratio — marked by fewer changes made after
PRs are published — can lead to a higher Merge Frequency, since
well-prepared PRs often result in higher-quality code that’s more likely to
be approved and merged quickly. This increased efficiency allows teams
to move more quickly from review to merge, boosting Merge Frequency.

Quality Insights Analysis

A higher PR Maturity ratio correlates with higher velocity.

KEY TAKEAWAY

Merge Rate vs. PR Maturity Ratio
Benchmark Distribution

0%

20%

40%

60%

80%

100%

PR MATURITY RATIO BENCHMARK

Needs Focus

Elite Needs Focus

Fair Strong

Merge Rate Benchmark

FairStrongElite

2025 Software Engineering Benchmarks Report 32

INSIGHT NO. 2

The higher the PR Maturity Ratio, the shorter the Pickup Time.

Pickup Time
The time a pull request waits for someone to start reviewing it.
Low Pickup Time represents strong teamwork and a healthy review process.

Interestingly, we see a dramatic correlation here where reviewers
prioritize quickly starting to review PRs when the PR Maturity is high.
If specific developers author well-polished PRs, reviewers will naturally
prefer to review their PRs. Further, reviewers taking an initial look at PRs
that don’t appear complete or ready will often tend to abandon or push
the review to a later time, increasing Pickup Time as that measures
the time to the first comment actually made by the reviewers.

PR Maturity Ratio vs. Pickup Time
Benchmark Distribution

For teams looking to
enable cross-departmental
collaboration and improve
code quality, here are some
tips from the LinearB dev team:

TOOLTIP 3 WAYS TO ENHANCE QUALIT Y AND SECURIT Y WITH SEI+ AUTOMATION

1. Require extra reviewers
for complex PRs

Automatically assign two
reviewers to those few PRs that are
especially complex or affect risky
components in the codebase.

2. Auto-approve
documentation changes

Proper documentation plays
an integral role in facilitating
cross-departmental collaboration.
We recommend leveraging a workflow
automation tool like gitStream to
verify and auto-approve all
documentation changes.

3. Let DevSecOps take
the reins on high-risk work

Flag risky code changes with
workflow automation, based
on security scanners’ output.
Automatically pull in DevSecOps
as required reviewers for
PRs with security implications.

Needs FocusFairStrongElite

Elite

Strong

Fair

Needs Focus

PR Maturity
Ratio Benchmark

PICKUP TIME BENCHMARK

100%

80%

60%

40%

20%

0%

2025 Software Engineering Benchmarks Report 33

Start-up engineering
organizations tend to ship
code at a faster rate than
Scale-ups and Enterprises.

Insight No. 1

Start-ups have higher Merge Frequencies
than Enterprises and Scale-ups.

Insight No. 2

Start-ups have higher Deploy Frequencies
than Enterprises and Scale-ups.

KEY TAKEAWAY

Org Size
Insights

SUMMARY

2025 Software Engineering Benchmarks Report 34

Unlike larger organizations, start-ups often work with smaller,
cross-functional teams that operate with minimal bureaucracy,
leading to quicker decision-making and less friction across the
development process. Start-ups typically prioritize speed and
market responsiveness over formal process, allowing engineers
to quickly test, iterate, and release code. Additionally, start-ups
are less likely to face complex compliance, security, or operational
constraints, which often slow down deployment in larger companies.

In contrast, scale-ups and enterprises have to manage legacy systems,
ensure stringent quality control, and coordinate across multiple teams,
which can introduce delays downstream. This freedom from extensive
coordination and risk mitigation requirements allows start-ups to
adopt an agile mentality, which enables them to ship code
at a pace that larger organizations may struggle to match.

Org Size Insights Analysis

Start-up engineering organizations tend to ship code
at a faster rate than Scale-ups and Enterprises.

KEY TAKEAWAY

Software projects can be
unpredictable due to a multitude
of reasons - from unforeseen
technical challenges to scope
changes. Engineering metrics,
such as Planning Accuracy,
and workflow automation
tools have helped us increase
predictability in release
schedules and timelines.”

“

Marko T.
CTO, Assignar

2025 Software Engineering Benchmarks Report 35

INSIGHT NO. 1

Start-ups have higher Merge Frequencies
than Enterprises and Scale-ups.

Merge Frequency
The total number of pull requests or merge requests
merged by a team over a period of time.

Start-ups typically have less formalized processes, allowing
developers to submit, review, and merge code changes more
quickly to keep up with the high-paced demands of early-stage
growth and market fit. The urgency to release features and validate
assumptions with real users pushes start-ups to prioritize speed over
extensive review processes, resulting in higher Merge Frequencies
as they continuously iterate and adapt. In contrast, enterprises and
scale-ups tend to have more established code review standards,
compliance requirements, and a need for thorough testing due to
larger user bases and complex, interdependent systems. This structured
environment, though beneficial for stability and risk mitigation,
often slows down Merge Frequencies. Start-ups, by necessity,
often embrace the famed “move fast and break things” mindset.

Merge Frequency vs. Org Size

Org Size by Number
of Employees

 Start-up: 0-200 employees
 Scale-up: 200-1000 employees
 Enterprise: 1000+ employees

M
ER

G
E

FR
EQ

U
EN

C
Y

Start-up Scale-up Enterprise

12

10

8

6

4

2

0

2025 Software Engineering Benchmarks Report 36

INSIGHT NO. 2

Start-ups have higher Deploy Frequencies
than Enterprises and Scale-ups.

Deploy Frequency
A measurement of how often code is released. Elite Deploy Frequency
represents a stable and healthy continuous delivery pipeline.

Start-ups typically have higher Deploy Frequencies than
enterprises and scale-ups because their leaner infrastructure
and agile methodologies support frequent deployments.

Smaller, cross-functional teams within start-ups often work
closely together and can push updates directly with minimal
handoffs or delays, resulting in faster deployment cycles.
In contrast, enterprises and scale-ups operate within a more
complex structure, with multiple teams, dependencies and
compliance requirements that necessitate rigorous testing and
coordination, which naturally slows down Deploy Frequencies.

Additionally, larger organizations tend to prioritize stability
and risk management to avoid disruptions in services for their
large user base, often opting for more controlled, scheduled
releases. This focus on quality control over speed means that
start-ups generally see higher Deploy Frequencies as they prioritize
adaptability and speed over the formality and risk management
processes more typical of enterprises and scale-ups.

Deploy Frequency vs. Org Size

Org Size by Number
of Employees

8

6

4

2

0

D
EP

LO
Y

 F
R

EQ
U

EN
C

Y
 (

D
EP

LO
Y

S
/D

EV
/W

EE
K

)

Start-up Scale-up Enterprise

 Start-up: 0-200 employees
 Scale-up: 200-1000 employees
 Enterprise: 1000+ employees

This is why we’re including a brand new section in this
year’s report all about the state of bot usage today.

Bot-Generated
PR Research
A study of key open-source repos shows a surge in bot-created
PRs, with the share of bot PRs rising from 5% to 15% over
the past two years. Similar results appear across thousands
of dev teams in LinearB’s user base. This highlights a
broader shift towards automation in software development.

Vendors like Dependabot and Renovate have pioneered
this category. Their acquisitions in 2019 by Github and Mend,
respectively, heralded the growing importance of automation
in code management and compliance best practices.

A second wave of PR bots is coming, driven by advancements
in AI agents and machine learning. The potential for automation
to revolutionize code management becomes increasingly apparent.
Sometimes referred to as Agentic AI, this future promises a new
generation of even “smarter” bots that will be able to automate more
complex tasks. Given the rise of AI-generated code, you can likely
imagine a world in which the percentage of bot-authored code rises
from 15% today to 50% or more in the very near future.

NEW

“We deploy frequently, but versioning can be tricky. We now have completely
seamless automatic deployments thanks to a custom gitStream checker that
enforces semantic commits for automatic versioning during deployments.ˮ

Jeff Williams
CTO, Contrast Security

https://github.com/dependabot
https://github.com/renovatebot

2025 Software Engineering Benchmarks Report 38

Percentage of Untraceable Bot-Created PRs

Bot-Generated PR Density by Vendor
Teams with more than 100 bot-generated PRs in the last 6 months.

INSIGHT NO. 1

Our research revealed that bot-generated PRs make up 13.3% of
the average number of code submissions at software engineering
organizations that use tools like Renovate or Dependabot. Renovate
creates, on average, 16.8% of PRs, while Dependabot creates 10.5%.

Depending on your engineering org size, this translates to thousands,
or even tens of thousands, of bot-created PRs every year.

INSIGHT NO. 2

96.2% of all bot-created PRs are not linked to a PM
issue (96.6% for Dependabot and 98.7% for Renovate).

This presents a major risk to PM hygiene, untraceable
work, and compliance (e.g. SOC 2, which typically requires
that every PR be linked to a Project Management ticket).

13.3% 10.5%
16.8%

Total bots Dependabot Renovate

96.2%
Untraceable Bot-Created PRs

2025 Software Engineering Benchmarks Report 39

Branch State Version Bumps Distribution
* Stale defined as 7 days without Git activity.

Average Distribution of Version Bumps
Note: This data is from Dependabot users only.

INSIGHT NO. 3

The data revealed that 41.3% of all Dependabot PRs are patch
updates (which are often rubber-stamp approved, and can
typically be safely auto-merged) and 42.96% are
minor updates (which can be auto-approved).

In total, SEI automation can safely auto-approve up to
84% of your bot PRs (patch and minor updates)
and auto-merge 41.15% (patches only).

INSIGHT NO. 4

A large portion of these bot-authored PRs are ignored and
eventually deleted – no doubt due to their huge volume.
Over 37.5% of all Dependabot updates (major, minor &
patch updates) are deleted and never acted upon.
In addition, some 16.4% of these PRs are stale,
likely to be deleted at some point in the future.

This dynamic hints at the toil required to handle these PRs.
Even just cleaning them up is work developers shy away
from. But the deeper impact of ignoring or stalling these
PRs is in the longer periods where the codebase has
deprecated or vulnerable dependencies, defeating
the entire purpose of the dependency bots.

43% Minor

18% Major

41.2% Patch

2.8% Active

13.2% Merged

16.4% Stale*

29.3% Deployed

37.6% Deleted

2025 Software Engineering Benchmarks Report 40

As a quick refresher, updates to the
library dependencies are broken down
into the following three categories:

Patch Minor Major
Patch updates typically address bug fixes
and security vulnerabilities. They do not
introduce new features or functionality,
and are, generally, backward-compatible.
For most teams, bot-authored patch
updates can be auto-merged.

Minor updates usually introduce new
features or enhancements to existing
functionality. They may also include bug
fixes, but they tend to focus primarily on
new capabilities. In most cases, bot-
created minor updates are backward-
compatible and can be auto-approved.

Major updates represent significant
milestones in the software’s
development. They include new
features, enhancements, and in some
cases, substantial changes to existing
functionality. They often introduce
breaking changes, meaning existing
functionality or APIs might not work
as before without modifications.
Generally, bot-authored major updates
need to be thoroughly reviewed and
tested before they are merged.

2025 Software Engineering Benchmarks Report 41

linearb.io

What Now? See where your team stacks up
with a free forever account and
begin building your engineering
metrics program today!

Schedule a demo to discuss any
of what was covered in this report
in more detail, or to see some
of the more advanced features.

Engineering Leader’s Guide
to Developer Productivity

Discover how to quantify Developer
Productivity, common blockers,
strategies to improve it and how and
when to present DevProd data.

Download Guide

Measuring Impact:
The GenAI Code Report

This LinearB Research Report breaks
down how to measure the impact
of Generative AI code across the
software delivery lifecycle.

Download Report

Managing Bot-Generated
PRs & Reducing Team
Workload by 6%

How dependency management
bots are affecting your Developer
Experience and Productivity, plus how
to leverage PR automation to better
manage them.

Download Report

MORE INSIGHTS FOR R&D LEADERS

https://linearb.io/
https://linearb.io/get-started
https://linearb.io/get-started
https://linearb.io/book-a-demo
https://linearb.io/resources/engineering-leader-guide-to-accelerating-developer-productivity
https://linearb.io/resources/measuring-impact-the-genai-code-report
https://linearb.io/resources/research-report-managing-bot-generated-prs

Appendix Software Engineering
Benchmarks (Averages)

43

Software Engineering
Benchmarks (P50)

44

Software Engineering
Benchmarks (P90)

45

Org Size
Distribution

46

Org Regions
Distribution

46

Org Industries
Distribution

47

2025 Software Engineering Benchmarks Report 43

Category Metric Elite Good Fair Needs Focus

DevEx

Coding Time (hours) < 19 19 - 34 35 - 66 > 66

First Commit
Coding Time (hours) < 18 18 - 30 30 - 54 > 54

Ticket Coding Time (hours) < 36 36 - 75 76 - 123 > 123

Pickup Time (hours) < 8 8 - 14 15 - 23 > 23

Approve Time (hours) < 15 15 - 27 28 - 45 > 45

Merge Time (hours) 7 7- 13 14 - 24 > 14 - 24

Review Time (hours) < 12 12 - 21 22 - 37 > 37

Deploy Time (hours) < 21 21 - 76 77 - 163 > 163

Merge Frequency
(per dev/week) > 2.25 2.25 - 1.35 1.34 - 0.75 < .75

PR Maturity (%) > 91% 91 - 84% 83 - 77% < 77%

DORA

Cycle Time (hours) < 50 50 - 90 91 - 156 > 156

Deploy Frequency
(per service) > 1 1 - 0.5 .4 - 0.15 < .15

Change Failure Rate (%) < 1% 1 - 4% 5 - 23% > 23%

MTTR (hours) < 6 6 - 11 12 - 30 > 30

Predictability

PR Size (code changes) < 194 194 - 339 340 - 661 > 661

Refactor Rate (%) < 11% 11 - 16% 17 - 20% > 20%

Rework Rate (%) < 3% 3 - 5% 6 - 7% > 7%

PRs Without Review (%) < 0.7% .7 - 3% 4 - 13% > 13%

PM Hygiene

Issues Linked to Parents
(%) > 91% 91 - 72% 71 - 62% < 62%

Branches Linked to Issues
(%) > 81% 81 - 64% 63 - 51% < 51%

In Progress Issues
with Estimation (%) > 59% 59 - 32% 31 - 20% < 20%

In Progress Issues
with Assignees (%) > 97% 97 - 86% 85 - 80% < 80%

Software Engineering Benchmarks (Averages) Benchmarks by Org | 3,026 Orgs | 6,100,878 Pull Requests | 167,437
Active Contributors | Time metrics in minutes or hours, as noted

2025 Software Engineering Benchmarks Report 44

Category Metric Elite Good Fair Needs Focus

DevEx

Coding Time (mins) < 4 mins 4 - 7 mins 8 - 20 mins > 20 mins

First Commit
Coding Time (mins) < 4 mins 4 - 6 mins 7 - 14 mins > 14 mins

Ticket Coding Time
(mins/hours) < 7 mins 7 mins - 1 hour 1 - 11 > 11

Pickup Time (mins/hours) < 12 mins 12 - 26 mins 27 mins - 1 hour > 1

Approve Time (hours) < 1 1 - 3 4 - 6 > 6

Merge Time (mins/hours) 13 mins 13 - 30 mins 31 mins - 2 hours > 2

Review Time (mins/hours) < 20 mins 20 mins - 1 hour 1 - 3 > 3

Deploy Time (mins/hours) < 50 mins 50 mins - 22 hours 23 - 116 > 116

Merge Frequency
(per dev/week)* > 2.25 2.25 - 1.35 1.34 - 0.75 < .75

PR Maturity (%)* > 91% 91 - 84% 83 - 77% < 77%

DORA

Cycle Time (hours) < 3 3 - 18 19 - 46 > 46

Deploy Frequency
(per service)* > 1 1 - 0.5 .4 - 0.15 < .15

Change Failure Rate (%)* < 1% 1 - 4% 5 - 23% > 23%

MTTR (hours) < 6 6 - 11 12 - 30 > 30

Predictability

PR Size (code changes) < 18 18 - 30 31 - 47 > 47

Refactor Rate (%)* < 11% 11 - 16% 17 - 20% > 20%

Rework Rate (%)* < 3% 3 - 5% 6 - 7% > 7%

PRs Without Review (%)* < 0.7% .7 - 3% 4 - 13% > 13%

PM Hygiene

Issues Linked to
Parents (%)* > 91% 91 - 72% 71 - 62% < 62%

Branches Linked to
Issues (%)* > 81% 81 - 64% 63 - 51% < 51%

In Progress Issues
with Estimation (%)* > 59% 59 - 32% 31 - 20% < 20%

In Progress Issues
with Assignees (%)* > 97% 97 - 86% 85 - 80% < 80%

Software Engineering Benchmarks (P50) Benchmarks by Org | 3,026 Orgs | 6,100,878 Pull Requests | 167,437
Active Contributors | Time metrics in minutes or hours, as noted
* Averages

2025 Software Engineering Benchmarks Report 45

Category Metric Elite Good Fair Needs Focus

DevEx

Coding Time (hours) < 26 26 - 72 73 - 146 > 146

First Commit
Coding Time (hours) < 25 25 - 68 69 - 122 > 122

Ticket Coding Time (hours) < 76 76 - 169 170 - 292 > 192

Pickup Time (hours) < 16 16 - 25 26 - 63 > 63

Approve Time (hours) < 31 31 - 73 74 - 119 > 119

Merge Time (hours) 16 16 - 23 24 - 64 > 64

Review Time (hours) < 21 21 - 50 51 - 96 > 96

Deploy Time (hours) < 40 40 - 197 198 - 420 > 420

Merge Frequency
(per dev/week)* > 2.25 2.25 - 1.35 1.34 - 0.75 < .75

PR Maturity (%)* > 91% 91 - 84% 83 - 77% < 77%

DORA

Cycle Time (hours) < 119 119 - 218 219 - 410 > 410

Deploy Frequency
(per service)* > 1 1 - 0.5 .4 - 0.15 < .15

Change Failure Rate (%)* < 1% 1 - 4% 5 - 23% > 23%

MTTR (hours) < 6 6 - 11 12 - 30 > 30

Predictability

PR Size (code changes) < 310 310 - 470 471 - 717 > 717

Refactor Rate (%)* < 11% 11 - 16% 17 - 20% > 20%

Rework Rate (%)* < 3% 3 - 5% 6 - 7% > 7%

PRs Without Review (%)* < 0.7% .7 - 3% 4 - 13% > 13%

PM Hygiene

Issues Linked to
Parents (%)* > 91% 91 - 72% 71 - 62% < 62%

Branches Linked to
Issues (%)* > 81% 81 - 64% 63 - 51% < 51%

In Progress Issues
with Estimation (%)* > 59% 59 - 32% 31 - 20% < 20%

In Progress Issues
with Assignees (%)* > 97% 97 - 86% 85 - 80% < 80%

Software Engineering Benchmarks (P90) Benchmarks by Org | 3,026 Orgs | 6,100,878 Pull Requests | 167,437
Active Contributors | Time metrics in minutes or hours, as noted
* Averages

2025 Software Engineering Benchmarks Report 46

Europe

North America

Rest of the World

57% 26%

18%

ORG SIZE DISTRIBUTION REGION DISTRIBUTION

10%
Enterprise

20%
Scale-up

70%
Start-up

2025 Software Engineering Benchmarks Report 47

6%
Finance & Banking

37%
Other

39%
Software & IT Services

18%
Professional Services

INDUSTRY DISTRIBUTION

