
2023

Software Engineering

Benchmarks Report
For the first time, engineering teams can benchmark
their performance against data-backed industry
standards.

Introduction 01

Software Engineering Benchmarks 03

DORA Benchmarks 04

Engineering Investment Benchmarks 05

Capacity Accuracy Benchmarks 06

Software Engineering Benchmarks

by Org Size

07

General Metrics Insights 10

Segment Insights 16

Region and Industry Insights 25

Conclusion 29

Appendix 30

TABLE OF CONTENTS

Introduction 012023 Software Engineering Benchmarks Report

Introduction
Yishai Beeri | LinearB CTO

In 2018, the authors of Accelerate surveyed more
than 23,000 employees at 2,000 different software
companies – ranging from startups to non-profits to
Fortune 500 companies – with the purpose of
unveiling the methodologies that set elite
organizations apart.

In their research, asserts that “speed and
stability” facilitate each other and that any
engineering organization can measure and improve
these outcomes. Additionally, Accelerate points out
that the “highest performers are twice as likely to
meet or exceed their organizational performance
goals.”

The Continuous Delivery (CD) practices they advise,
such as transitioning to shorter development cycles,
automating testing, and keeping PR size small, all
improve speed and quality while ingraining a culture
of continuous improvement in teams.

While most of the industry is in the process of
adopting CD, few have established standardized
processes that measure their progress.

DORA

Alongside qualitative measures, tracking quantitative
metrics, like those found in this report, is an essential
step to improving operational efficiency and aligning
engineering resources more closely to company
goals.
 

It’s difficult to set realistic targets if you don’t have a
baseline understanding of what “good” means for
your team. Software engineering benchmarks
provide a standardized and objective way to evaluate
performance. By measuring high-impact metrics
against industry peers, you can identify your team’s
strengths, weaknesses, and workflow bottlenecks.

Gaining a deeper understanding of where you stack
up in the industry also plays an essential role in:

Establishing strategies to improve performance

Advocating for more headcount or financial resources

Reporting engineering efficiency and health to

the business

https://dora.dev/

Introduction 022023 Software Engineering Benchmarks Report

These are the reasons we put together the 2023
Software Engineering Benchmarks Report. For the
first time since DORA published its first State of
DevOps Report in 2014, engineering teams can
benchmark their performance against data-backed
industry standards.

The following data was compiled from a study of
2,000+ teams, 100k+ contributors, and 3.7 million
PRs. In this report, you'll find all metrics segmented
by the following criteria: organization size,
geography, and industry.

Data S o u r c e d f r o m

2,000+
teams

3.7M
PRs

64
Countries

It’s important to note that all data has been
anonymized, aggregated, and normalized using a P75
(75th percentile) calculation. P75 is less sensitive to
extreme values or outliers in the data, providing the
most robust and reliable measure possible.

We’ve organized the data into the following levels of

performance for each metric:

Elite Top 10% of the LinearB community

Good Top 30% of the LinearB community

Fair Top 60% of the LinearB community

Needs Focus Bottom 40% of the LinearB community

The future of software engineering is bright indeed,
and we hope that the insights presented in this
report can serve as a north star for dev teams aiming
to ship higher quality code faster.

Yishai Beeri | LinearB CTO

Software Engineering Benchmarks 032023 Software Engineering Benchmarks Report

2022 orgs 3,694,690 Pull Requests 103,807 active contributors time frame 08/01/22 - 08/01/23 at least 400 branches in org| | | |

Software Engineering Benchmarks

Category Metric Elite Good Fair Needs Improvement

Efficiency

Merge Frequency

(per dev/week)
> 2 2 - 1.5 1.5 - 1 < 1

Coding Time

(hours)
< 0.5 0.5 - 2.5 2.5 - 24 > 24

PR Pickup Time

(hours)
< 1 1 - 3 3 - 14 > 14

PR Review Time

(hours)
< 0.5 0.5 - 3 3 - 18 > 18

Deploy Time

(hours)
< 3 3 - 69 69 - 197 > 197

DORA

Cycle Time

(hours)
< 19 19 - 66 66 - 218 > 218

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
< 1% 1% - 8% 8% - 39% > 39%

MTTR

(hours)
< 7 7 - 9 9 -10 > 10

Quality and

Predictability

PR Size

(code changes)
< 98 98 - 148 148 - 218 > 218

Rework Rate

(%)
< 2 2% - 5% 5% - 7% > 7%

Refactor Rate

(%)
< 9% 9% - 15% 15% - 21% > 21%

Planning Accuracy

(per sprint)
> 85% 85% - 60% 60% - 40% < 40%

Capacity Accuracy

(per sprint)

Ideal Range

85% - 115%
Under Commit

above 130%
Potential Under Commit

116% - 130%
Potential Over Commit

70% - 84%

DORA Benchmarks 042023 Software Engineering Benchmarks Report

DORA Benchmarks

Cycle Time

Cycle time (aka Lead Time for Changes) measures the time it
takes for a single engineering task to go through the different
phases of the delivery process from 'code' to 'production'.

Deployment Frequency

Deployment frequency measures how often code is released.
Elite deployment frequency represents a stable and healthy
continuous delivery pipeline.

MTTR (Mean Time to Recovery)

The average time it takes to restore from a failure of the
system or one of its components.

CFR (Change Failure Rate)

The percentage of deployments causing a failure in
production.

2022 orgs 3,694,690 Pull Requests 103,807 active contributors time frame 08/01/22 - 08/01/23 at least 400 branches in org| | | |

Category Metric Elite Good Fair Needs Improvement

DORA

Cycle Time

(hours)
< 19 19 - 66 66 - 218 > 218

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
< 1% 1% - 8% 8% - 39% > 39%

MTTR

(hours)
< 7 7 - 9 9 - 10 > 10

Eng. Investment Benchmarks 052023 Software Engineering Benchmarks Report

Engineering Investment Benchmarks

The Engineering Investment Benchmarks provide a
high-level view into where and how engineering
teams are investing their resources. Unlike our
metrics benchmarks, you’ll see the investment
benchmarks do not include proficiency levels. This is
intentional due to the unique needs and requirements
of each organization.

We recommend using these categories and
investment percentages as a starting point when
aligning R&D resource investment with the board and
executive team.

Investment

Benchmarks

New Value

Feature Enhancement

Developer Experience

KTLO

10%

15%

20%

55%

2022 orgs 3,694,690 Pull Requests 103,807 active contributors

time frame 08/01/22 - 08/01/23 at least 400 branches in org

| |

|

Engineering teams can use the investment
benchmarks to help answer questions like:

ó What type of work are we spending most of our
resources on?

ó Are we investing enough in new features vs. keeping
the lights on?

ó Are we balancing our investment in new value with our
investment in the tools and processes that allow new
value to be built more effectively?

New Value

Work on new features that
increases revenue and fuels
growth by new customer
acquisition or expansion.

Feature Enhancements

Incremental enhancements to
existing features and work to
deliver a product that ensures
customer satisfaction.

Developer Experience

Work performed to improve the
productivity of development
teams and their overall work
experience.

KTLO (Keeping the Lights On)

The minimum tasks required in
order to maintain stable
operations, keep high service
levels, and meet compliance &
regulatory requirements.

Capacity Accuracy Benchmarks 062023 Software Engineering Benchmarks Report

2022 orgs 3,694,690 Pull Requests 103,807 active contributors

time frame 08/01/22 - 08/01/23 at least 400 branches in org

| |

|

Actual Distribution for Capacity Accuracy

Ideal range

Under Commit

Potential Under Commit

Potential Over-Commit

Ideal Range 85% - 115%

Under Commit Above 130%

Potential Under
Commit

116% - 130%

Potential Over
Commit

70% - 84%

8.1%
11.5%

57.3%

23.2%

Capacity Accuracy Benchmarks

Capacity Accuracy

Measures how many issues/story points your team

completed in an iteration (planned and unplanned)

compared to the planned amount.

Capacity Accuracy is a unique benchmark that is
based on project data. It helps teams answer

the question: “Are we taking on an amount of work
that we can reasonably accomplish?”

For most engineering leaders, knowing whether or
not you’ll deliver a new feature set on time is a matter
of experience, intuition, manual work, and lots of time
spent in meetings. Unfortunately, without
quantitative data to back up anecdotal evidence,
engineering leaders are unable to predictably
forecast project delivery timelines.

To begin accurately forecasting project delivery and
determine if timelines can be moved up, we
recommend tracking quality and predictability
metrics such as capacity accuracy.

 Benchmarks by Org Size 072023 Software Engineering Benchmarks Report

Software Engineering

Benchmarks by Org Size

Enterprise

Enterprise 1000+ Employees|

Category Metric Elite Good Fair Needs Improvement

Efficiency

Merge Frequency

(per dev/week)
> 1.5 1.5 - .85 .85 - .50 < .50

Coding Time

(hours)
< .25 .25 - 1 1 - 21 > 21

PR Pickup Time

(hours)
< .5 .5 - 2 2 - 10 > 10

PR Review Time

(hours)
< 1 1 - 3 3 - 17 > 17

Deploy Time

(hours)
< 4 4 - 102 102 - 221 > 221

DORA

Cycle Time

(hours)
< 29 29 - 113 113 - 291 > 291

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
< 1.25% 1.25% - 5.75% 5.75% - 32% > 32%

MTTR

(hours)
< 8 8 - 9 9 - 10 > 10

Quality and

Predictability

PR Size

(code changes)
< 89 89 - 135 135 - 182 > 182

Rework Rate

(%)
< 10% 10% - 15% 15% - 21% > 21%

Refactor Rate

(%)
< 9% 9% - 15% 15% - 21% > 21%

2022 orgs 3,694,690 Pull Requests 103,807 active contributors time frame 08/01/22 - 08/01/23 at least 400 branches in org| | | |

 Benchmarks by Org Size 082023 Software Engineering Benchmarks Report

Scale-up
Software Engineering

Benchmarks by Org Size

Scale-Up 200 - 1000 Employees|

Category Metric Elite Good Fair Needs Improvement

Efficiency

Merge Frequency

(per dev/week)
> 1.75 1.75 - 1 1 - .50 < .50

Coding Time

(hours)
< .50 .50 - 3.25 3.25 - 35 > 35

PR Pickup Time

(hours)
< 1.5 1.5 - 4 4 - 15 > 15

PR Review Time

(hours)
< 1.5 1.5 - 4 4 - 19 > 19

Deploy Time

(hours)
< 3 3 - 50 50 - 170 > 170

DORA

Cycle Time

(hours)
< 27 27 - 86 86 - 215 > 215

Deployment Frequency

(per service/week)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
< .70% .70 - 4.5% 4.5 -21.5% > 21.5%

MTTR

(hours)
< 8 8 - 9 9 - 10 > 10

Quality and

Predictability

PR Size

(code changes)
< 98 98 - 139 139 - 209 > 209

Rework Rate

(%)
< 3% 3 - 5% 5 - 8% > 8%

Refactor Rate

(%)
< 13% 13 - 17% 17 - 21% > 21%

2022 orgs 3,694,690 Pull Requests 103,807 active contributors time frame 08/01/22 - 08/01/23 at least 400 branches in org| | | |

Benchmarks by Org Size 092023 Software Engineering Benchmarks Report

Software Engineering

Benchmarks by Org Size

Startup 0-200 Employees|

Category Metric Elite Good Fair Needs Improvement

Efficiency

Merge Frequency

(per dev/week)
> 2 2 - 1.35 1.35 - .85 < .85

Coding Time

(hours)
< .35 .35 - 3 3 - 26 > 26

PR Pickup Time

(hours)
< 1 1 - 3 3 - 15 > 15

PR Review Time

(hours)
< 0.5 0.5 - 3 3 - 20 > 20

Deploy Time

(hours)
< 3 3 - 70 70 - 194 > 194

DORA

Cycle Time

(hours)
< 21 21 - 71 71 - 233 > 233

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
< .75% .75 - 5% 5 - 20% > 20%

MTTR

(hours)
< 8 8 - 9 9 - 10 > 10

Quality and

Predictability

PR Size

(code changes)
< 98 98 - 150 150 - 218 > 218

Rework Rate

(%)
< 2% 2- 4% 4 - 7% > 7%

Refactor Rate

(%)
< 10% 10 - 15% 15 - 20% > 20%

2022 orgs 3,694,690 Pull Requests 103,807 active contributors time frame 08/01/22 - 08/01/23 at least 400 branches in org| | | |

Startup

General Metrics Insights 102023 Software Engineering Benchmarks Report

General

Metrics Insights

General Metrics Insights 112023 Software Engineering Benchmarks Report

Benchmark Definitions

Efficiency

Merge Frequency

The average number of pull or merge requests
merged merged by one developer in one week.
Elite merge frequency represents few obstacles
and a good developer experience.

Coding Time

The time it takes from the first commit until a pull
request is issued. Short coding time correlates to
low WIP, small PR size and clear requirements.

Pickup Time

The time a pull request waits for someone to start
reviewing it. Low pickup time typically represents
strong teamwork and a healthy review process.

Review Time

The time it takes to complete a code review and
get a pull request merged. Low review time
represents strong teamwork and a healthy review
process.

Deploy Time

The time from when a branch is merged to when
the code is released. Low deploy time correlates
to high deployment frequency.

DORA

Cycle Time

(AKA Lead Time for Changes) measures the time
it takes for a single engineering task to go
through the different phases of the delivery
process from 'code' to 'production'.

Deployment Frequency

Measures how often code is released. Elite
deployment frequency represents a stable and
healthy continuous delivery pipeline.

MTTR (Mean Time to Recovery)

The average time it takes to restore from a failure
of the system or one of its components.

CFR (Change Failure Rate)

The percentage of deployments causing a failure
in production.

Quality and Predictability

PR Size

The number of code lines modified in a pull
request. Smaller pull requests are easier to
review, safer to merge, and correlate to a lower
cycle time.

Rework Rate

The amount of changes made to code that is less
than 21 days old. High rework rates signal code
churn and is a leading indicator of quality issues.

Refactor Rate

Refactored work represents changes to legacy
code. LinearB considers code "legacy" if it has
been in your code-base for over 21 days.

Planning Accuracy

The ratio of planned work vs. what is actually
delivered during a sprint or iteration. High
planning accuracy signals a high level of
predictability and stable execution.

Capacity Accuracy

Measures all completed (planned and unplanned)
work as a ratio of planned work.

General Metrics Insights 122023 Software Engineering Benchmarks Report

PR Review Process Insights

Key Takeaway

There is a positive correlation between longer PR

pickup/handoff times and longer review times.

It’s important to note that correlation does not
indicate causation. However, this data’s insights align
closely with the qualitative and anecdotal research
we’ve gathered from LinearB users over the past
year.

The longer a PR sits waiting for a review, the more
likely it is that the developer will move onto another
line of work. And this type of context switching
almost always poses a risk to review time – the
longer a developer spends away from a PR they
authored, the less fresh the context will be in their
mind when they return to it. When the review actually
starts, it will take the developer longer to address
comments and move the PR along.

Key Takeaway

Pull requests with a higher number of handoffs (back-

and-forth touches between contributors) will have a

higher review time.

Pickup Time vs Review time
Correlation of 0.37

R
e

v
ie

w
 T

im
e

 A
v

g

80

60

40

20

0
200 30 40 50

Pickup Time Avg

PR Handoffs vs Review time
Correlation of 0.4

R
e

v
ie

w
 T

im
e

 A
v

g

100

75

50

25

0
20 4 6

Avg Handoffs

Time in hours. Every data point represents one engineering organization.

General Metrics Insights 132023 Software Engineering Benchmarks Report

A higher number of review cycles for a pull request
can indicate a number of underlying inefficiencies
that ultimately increase a team’s cycle time. Pull
request size, code complexity, and developer
experience levels are common factors that cause
higher review times. Each of these factors and more
are quickly amplified with the introduction of pull
request idle time - the amount of time a pull request
sits idle between review phases - due to the effect
time has on context switching and flow state.

Reducing PR Pickup Time

Tool Tip

Add estimated review time labels to PRs, so developers

can gain context into reviews and prioritize their time

accordingly.

Reducing PR pickup time is a crucial element of
reducing cycle time and streamlining the software
development life cycle. When it comes to reducing
this metric, here are some best practices we
recommend:

Assign the right reviewer

Leverage workflow automation to route PRs to
developers with the most relevant recent activity and
knowledge on the code being modified.

Encourage devs to author small PRs

When PRs contain fewer lines of code, they present a
less daunting undertaking for the reviewer and are
far more likely to get picked up quickly.

Get real-time alerts on PR activity

Setting up real-time notifications will provide you
with immediate context about your PRs, including
review assignments, approvals, comments and
change requests.

“Visibility into our engineering metrics has given our business
critical telemetry and attribution for our engineering teams. In
the past 6 months, we were able to reduce our cycle time from
an average of 6 days to 2 days.”

Matt C.
Engineering Chief of Staff

https://docs.gitstream.cm/automations/provide-estimated-time-to-review/

General Metrics Insights 142023 Software Engineering Benchmarks Report

Every data point represents one engineering organization's average.

Merge Frequency vs Review time
Correlation of -0.32

R
e

v
ie

w
 T

im
e

 A
v

g

100

75

50

25

0
0.5 2.01.0 2.51.5 3.0

Merge Frequency

Merge Frequency vs Pickup Time
Correlation of -0.32

P
ic

k
u

p
 T

im
e

 A
v

g

100

75

50

25

0
0.5 2.01.0 2.51.5 3.0

Merge Frequency

Merge Frequency Insights

Key Takeaway

Long PR review cycles are a key obstacle to achieving

high merge frequency.

The data displays a negative correlation between both
merge frequency and pickup time, as well as merge
frequency and review time, meaning that the longer a PR
sits before getting picked up, the lower an organization’s
merge frequency will be. Conversely, when PR review &
pickup time lag, your team will merge fewer PRs over the
same amount of time.

Our research revealed that PR pickup time has the
strongest correlation with quantitative productivity
measures relative to the other cycle time metrics.
Ultimately, this suggests that PR pickup time is the
component metric of cycle time that perhaps mostly
affects inefficiencies and idle time.

Merge frequency is a leading indicator of developer
experience and software delivery pipeline health. Teams
with higher merge frequencies have fewer review cycle
bottlenecks that ultimately frustrate developers and slow
code delivery. Optimizing for merge frequency is one of
the most important pieces when it comes to creating an
elite developer experience and improving retention.

General Metrics Insights 152023 Software Engineering Benchmarks Report

Improving Code Reviews

Here are some best practices we recommend to dev
teams looking to streamline the PR Review process:

Automate reviewer assignment

Leverage a workflow automation tool like ,
which will route PRs to the developer with the most
commit activity and knowledge on the files in
question.

gitStream

Request changes on deprecated APIs

Set up automated alerts whenever a PR includes use
of a deprecated API. This allows engineering
managers to encourage best practices while
remaining hands-off.

Set expectations with PR Labels

Using automated labels to categorize PRs (e.g., bug
fix, high risk, documentation) can help reviewers
prioritize the most critical work and plan their days
accordingly.

Tool Tip

We recommend engineering leaders implement a set of

merge standards on their teams to establish policy-as-

code and ensure consistent adoption across the

organization.

Check out 13 of our favorite merge standards that

enforce quality and boost efficiency in The Continuous

Merge Guide to Merge Standards.

“High performance teams need a psychologically safe
environment. They don’t gel if someone is getting a whack on
the knuckles every time they forget a Pull Request review.
Workflow automation helps manage our Pull Request process
with simple alerts. It’s just a nice way of doing it.”

Jon Sowler
VP of Engineering

https://linearb.io/platform/gitstream
https://linearb.io/continuous-merge-white-paper
https://linearb.io/continuous-merge-white-paper

Segment Insights 162023 Software Engineering Benchmarks Report

Segment

Insights

Segment Insights 172023 Software Engineering Benchmarks Report

Cycle Time by Org Size

Key Takeaway

Enterprises have longer cycle times than startups and

scale-ups.

One of the most interesting findings in this year’s
report was that enterprises have a notably slower
cycle time than startups and scale-ups. Conversely,
startups and scale-ups are neck and neck when it
comes to this metric, with only a 2% difference in
speed.

This could, of course, be for a variety of reasons, but
is most likely due to the fact that smaller and mid-
size companies are more flexible, and consequently,
more agile. They can make decisions and adapt to
changes more swiftly, reducing the time it takes to
approve and merge PRs.

Additionally, smaller companies tend to have leaner
processes due to less bureaucracy and fewer layers
of management. A more minimal organizational
structure allows for quicker decision-making and less
red tape when it comes to PR reviews and approvals.

Cycle Time By Org Size

250

200

150

100

50

0
Startup Scale-up Enterprise

201 205

243

Startup: 0-200 employees

Scale-up: 200-1000 employees

Enterprise: 1000+ employees

Segment Insights 182023 Software Engineering Benchmarks Report

“Software projects can be unpredictable
due to a multitude of reasons - from
unforeseen technical challenges to scope
changes. Engineering metrics, such as
Planning Accuracy, and workflow
automation tools have helped us increase
predictability in release schedules and
timelines.”

Marko T.
CTO

Cycle Time by Org Size

Conversely, large enterprises often have more
complex organizational hierarchies and formalized
processes. Their PRs may need to go through
multiple layers of management and reviews, leading
to delays.

What’s more, large enterprises typically have more
extensive and complex codebases as well as legacy
systems that may require additional scrutiny and
testing. They also cater to a significantly larger
customer base and as such, face higher stakes when
merging code.

Despite these challenges, however, large
organizations are increasingly adopting DevOps
practices to streamline their development processes.
By implementing automation, fostering cross-
functional teams, and encouraging a culture of
efficiency, even Fortune 500 companies can work
towards reducing cycle time and remaining agile in
today’s fast-paced software development landscape.

Segment Insights 192023 Software Engineering Benchmarks Report

Efficiency Metrics by Org Size

Key Takeaway

Teams with shorter cycle times are able to achieve

higher merge frequency.

Although the PR review process comprises just one
leg of the full cycle time, it’s perhaps not surprising
that longer cycle time correlates with lower merge
frequency.   

This highlights the toll that higher PR WIP can take on
lead time, due to longer cycles and the resulting
need for context switching.

Startups and scale-ups tend to fall on the left side of
the graph – with lower cycle times and higher merge
frequencies – whereas enterprises fall to the right,
with higher cycle times and lower merge
frequencies.

Merge Frequency vs Cycle Time

1.2

1.0

0.8

0.6

0.4
200 210 220 230 240

Avg Cycle Time

A
v

g
 M

e
rg

e
 F

re
q

u
e

n
c

y

Scale-up

Enterprise

Startup

Startup: 0-200 employees

Scale-up: 200-1000 employees

Enterprise: 1000+ employees

Merge Frequency

Trendline for Merge
Frequency

Segment Insights 202023 Software Engineering Benchmarks Report

Efficiency Metrics by Org Size

As seen in the Cycle Time Average Breakdown graph,
enterprises are comparable to startups and scale-ups
across the coding, pickup, and review segments of cycle
time. Only in deploy time do we see slower cycles for
enterprises

Notably, deploy time dominates cycle time. Yet the
deploy process typically doesn’t directly overlap with
merge activities. So why do enterprises have a lower
merge frequency?   

One possible answer is that undeployed code (and the
attention required to coordinate deploys) is a significant
burden on developers that detracts from their ability to
merge code frequently. Another answer is that other
factors are at play – such as the team’s work hours and
overlap between work days. We’ll touch on these in more
detail later in this report.  

As merge frequency appears to be impacted by indirect
factors, and not just pickup and review times, it is
important to track this metric directly to ensure you are
improving it incrementally so as to unblock your teams.

Cycle Time Avg Breakdown

200

150

100

50

0
Startup Scale-up Enterprise

29

11 14

173

30

10 13

160

25
9

14

199

Startup: 0-200 employees

Scale-up: 200-1000 employees

Enterprise: 1000+ employees

Coding Time

Pickup Time

Review Time

Deploy Time

Did You Know

Enterprises have a deploy time that is 18%

higher than their start-up and scale-up counterparts.

Segment Insights 212023 Software Engineering Benchmarks Report

Startup: 0-200 employees | Scale-up: 200-1000 employees | Enterprise: 1000+ employees

Quality Metrics by Org Size

Key Takeaway

Enterprises have far less cross-team collaboration on

PRs than startups and scale-ups.

Pull request collaboration across teams is
substantially lower in enterprises, compared to scale-
ups or startups, possibly due to more work silos and
rigid boundaries around code ownership at the
enterprise level.   

On the other hand, rework rate is around 17% higher
in enterprises compared to startups. One possible
explanation is that siloed knowledge – coupled with
collaboration and reviews only happening within
team boundaries – are delaying the detection of
integration issues with other teams’ work, leading to
more rework required to successfully integrate.   

Enhanced cross-team visibility and collaboration
during the PR review process may help reduce this
rework.

Rework Rate

8%

6%

4%

2%

0%
Startup Scale-up Enterprise

R
e

w
o

rk
 R

a
te

Cross Team PR %

18

16

14

12

10
Startup Scale-up Enterprise

C
ro

s
s
 T

e
a

m
 P

R
 %

Segment Insights 222023 Software Engineering Benchmarks Report

Enhancing Security with

Workflow Automation

For teams looking to enable cross-departmental
collaboration and improve code quality, here are
some tips from the LinearB dev team:

Require Extra Reviewers for Complex PRs

Automatically assign two reviewers those few PRs
that are especially complex or affect risky
components in the codebase.

Auto-approve documentation changes

Proper documentation plays an integral role in
facilitating cross-departmental collaboration. We
recommend leveraging a workflow automation tool
like to verify and auto-approve all
documentation changes.

 gitStream

Let DevSecOps take the reins on high-risk work

Flag risky code changes with workflow automation.
Automatically pull in DevSecOps as required
reviewers for PRs with security implications.

"Workflow automation has had a
cascading impact on improving business
outcomes while enabling my team to
focus on solving the correct problems.
Tracking delivery metrics helped us
pinpoint areas of flow that could be
enhanced, dramatically boosting team
morale and engagement."

Craig W.
Head of Engineering

https://linearb.io/platform/gitstream

Segment Insights 232023 Software Engineering Benchmarks Report

Working Hours and Merge

Frequency by Org Size

Key Takeaway

Startups work longer hours than scale-ups and

enterprises, and have a higher Merge Frequency.

There is a positive correlation between merge
frequency and working hours, with startups working
the longest days and exhibiting a higher merge
frequency.

This could be for a variety of reasons, namely:

High Stakes

90% of startups fail, and most startups find themselves in
a precarious position, especially in early stages. The
success or failure of a company may very well hinge on
achieving critical goals quickly. This pressure can lead to
longer workdays to ensure those goals are met.

Resource Constraints

Startups typically have limited resources – including time,
money, and headcount. To make up for this deficit,
employees may work longer hours to meet tight
deadlines.

Merge Frequency vs Avg Working Day

1.2

1.0

0.8

0.6

0.4
8.5 8.6 8.7 8.8 8.9 9.0 9.1

Working Hours Avg

M
e

rg
e

 F
re

q
u

e
n

c
y

 A
v

g

Scale-up

Enterprise

Startup

Work Hours Overlap vs Merge Frequency in Teams

1.2

1.0

0.8

0.6

0.4
65% 70% 75% 80% 85%

AVG Percentage of Overlap

M
e

rg
e

 F
re

q
u

e
n

c
y

 A
v

g

Scale-up

Enterprise

Startup

Benchmarks by number of employees

Startup: 0-200 employees

Scale-up: 200-1000 employees

Enterprise: 1000+ employees

Merge Frequency

Trendline for Merge

Frequency

Segment Insights 242023 Software Engineering Benchmarks Report

Increased Competitive Pressure

Early stage companies often operate in highly
competitive markets where merge frequency can be a
crucial factor. Long hours may be necessary to outpace
competitors and gain a foothold in the market.

Cultural Factors

Startup culture often encourages a strong work ethic and
dedication to the company’s success. As such, team
members may feel a sense of camaraderie and
commitment to working hard together.

Additionally, our data displayed a positive correlation
between merge frequency and percentage of
overlapping working hours. We define overlapping
hours as those within the active work day for at least
half of the team’s contributors.
 

That overlapping work hours (and conversely,
timezone gaps) play a significant role in facilitating
(or hindering) teamwork should be no surprise.

Key Takeaway

Merge frequency is higher when team members are

working similar hours.

Here are some of the specific ways in which higher
overlap improves merge frequency:

Real-time collaboration

Engineers working during the same hours can
collaborate more effectively in real time. They can
schedule meetings, initiate pair programming
sessions and conduct code reviews without
significant delays. This real-time collaboration can
lead to quicker issue resolution and faster progress.

Reduced communication barriers

When developers are working at the same time, there
are fewer obstacles to effective communication.
Engineers can have spontaneous discussions, ask
questions and seek clarification without worrying
about inconveniencing their teammates.

Faster feedback loops

Engineers with overlapping hours can provide quicker
feedback to their colleagues. This is especially
important during code reviews and testing phases,
during which faster feedback loops mean that code
changes can be improved and merged more rapidly.

Region and Industry Insights 252023 Software Engineering Benchmarks Report

region and

Industry Insights

Region and Industry Insights 262023 Software Engineering Benchmarks Report

DORA Metrics by Region

Region Metric Elite Good Fair Needs Improvement

Europe

Cycle Time

(hours)
18.61 85.44 230.10 > 230.10

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
0.47% 2.65% 11.98% > 11.98%

MTTR

(hours)
7.48 9.00 10.26 > 10.26

North America

Cycle Time

(hours)
22.25 69.98 237.02 > 237.02

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
0.82% 5.26% 21.96% > 21.96%

MTTR

(hours)
7.38 9.09 10.50 > 10.50

Rest of the World

Cycle Time

(hours)
24.67 89.77 227.94 > 228

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
0.92% 5.27% 21.41% > 21.41%

MTTR

(hours)
7.23 8.79 10.53 > 10.53

2022 orgs 3,694,690 Pull Requests 103,807 active contributors time frame 08/01/22 - 08/01/23 at least 400 branches in org| | | |

Region and Industry Insights 272023 Software Engineering Benchmarks Report

DORA Benchmarks by Industry

Industry Metric Elite Good Fair Needs Improvement

Finance & Banking

Cycle Time

(hours)
21.58 67.98 242.60 > 242.60

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
0.63% 3.17% 17.46% > 17.46%

MTTR

(hours)
7.48 9.20 10.55 > 10.55

Other

Cycle Time

(hours)
27.09 84.33 230.53 > 230.53

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
0.59% 3.37% 14.46% > 14.46%

MTTR

(hours)
7.60 9.05 10.45 > 10.45

Professional Services

Cycle Time

(hours)
22.59 72.01 282.57 > 282.57

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
0.65% 5.86% 28.29% > 28.29%

MTTR

(hours)
7.22 8.67 10.77 > 10.77

Software & IT Services

Cycle Time

(hours)
16.72 71.93 227.36 > 227.36

Deployment Frequency

(per service)
> 1/day > 2/week 1 - 2/week < 1/week

Change Failure Rate

(%)
0.95% 5.76% 22.08% > 22.08%

MTTR

(hours)
7.51 9.10 10.30 > 10.30

2022 orgs 3,694,690 Pull Requests 103,807 active contributors

time frame 08/01/22 - 08/01/23 at least 400 branches in org

| |

|

Region and Industry Insights 282023 Software Engineering Benchmarks Report

Region and Industry Insights

Our research didn’t observe a notable difference in
metrics across regions or industries, and it’s
important to note that not all of the region and
industry data is statistically significant. However,
there are a few interesting points we’d like to
highlight.

Firstly, our data indicated that Software and IT
Services have a shorter deployment time, which can
likely be attributed to workflow automation and/or
early adoption of CI/CD methodologies.

Point of Interest

Software companies have a shorter deployment time

than other industries.

Moreover, even with shorter working days and fewer
employees clocking in on weekends, Europe
displayed outlier performance across several metrics
categories, namely: coding time, deploy time, and
CFR.

Point of Interest

Europe has a 28% shorter deploy time than the rest of

the world.

"Tracking engineering metrics has helped me as the VP of R&D to
have educated discussions with my direct reports and with my
CEO. I can identify bottlenecks quickly, measure team efficiency
and the developer experience, then improve based on data."

Idan Lavy
VP of R&D

Conclusion 292023 Software Engineering Benchmarks Report

We hope that this Software Engineering Benchmarks
Report will give engineering leaders and their teams a
better understanding of their performance today, such
that they can build a strategy that helps them improve
and hit their business goals in the future.

Teams can make the biggest improvements when they
know what to expect. And a predictable pipeline is one
that allows for incremental shifts in the right direction.

With standardization and repeatability built into your
development workflows, teams of all sizes can move
faster and scale efficiently.

Did You Know

LinearB metrics and programmable workflows have

already saved developers thousands of hours, with the

average repo seeing a 61% decrease in Cycle Time.

You can

 and begin building your engineering

metrics program today! If you’d like to discuss any of

what was covered in this report in more detail, or you

want to see some of the more advanced features, you

can

see where your team stacks up with a free

forever account

schedule a demo.

Conclusion

Pressure is the one constant in an engineering leader’s
day-to-day life. Pressure to deliver more features.
Pressure to deliver them faster. Pressure to take on an
extra priority project or customer RFE. All with a flat or
shrinking budget. These responsibilities all revolve
around driving operational excellence.

But in the last few years, the role and core
responsibilities of engineering changed, mirroring shifts
in the business landscape. Software development and
delivery became a key driver of business value. With that
paradigm shift comes new added pressure to deliver
business results.

This is the dual mandate of engineering leaders: continue
delivering operational excellence while simultaneously
driving the business forward.

Average with LinearB120 day improvement

47% Decrease in Cycle Time

10.2x Return on Investment

https://linearb.io/get-started
https://linearb.io/get-started
https://linearb.io/book-a-demo

Appendix 302023 Software Engineering Benchmarks Report

Appendix

Appendix 312023 Software Engineering Benchmarks Report

Org Size

Distribution

Enterprise Scale-up Startup

288
13.3%

494
22.8%

1387
63.9%

Appendix 322023 Software Engineering Benchmarks Report

Org Regions

Distribution

Rest of the world Europe North America

241
19.2%

283
22.6%

730
58.2%

Appendix 332023 Software Engineering Benchmarks Report

Org Industries

Distribution

Professional

Services

Software &

IT Services

Other
Finance

& Banking

234
19.2%

458
37.6%

410
33.7%

116
9.5%

Appendix 342023 Software Engineering Benchmarks Report

Investment Metrics Glossary

New Value

Work on new features that increases revenue and fuels growth by new customer
acquisition or expansion.

This might include activities such as:

Adding a new feature

Implementing roadmap work, etc.

Supporting a new platform or partner application

Developer Experience

Work performed to improve the productivity of development teams and their overall
work experience.

This might include activities such as:

Code restructuring

Testing automation

Better developer tooling

Work to reduce size of the KTLO bucket in the future

Feature Enhancements

Incremental enhancements to existing features and work to deliver a product that
ensures customer satisfaction.

This might include activities such as:

Customer requested improvements

Improved performance / utilization

Improved product reliability or security, etc.

Iterations to improve adoption/retention/quality

KTLO (Keeping the Lights On)

The minimum tasks required in order to maintain stable operations, keep high
service levels, and meet compliance & regulatory requirements.

This might include activities such as:

Maintaining current security posture

Service and ticket monitoring & troubleshooting

Maintaining current levels of service uptime, etc.

