
17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 1

17 Metrics for
Modern Dev Leaders

Measuring the right indicators will help you accelerate delivery,

maintain positive culture, and translate dev activity to business value

https://linearb.io/remote-dev-productivity-trends/

LINEARB.IO 2

Velocity is the most
dangerous metric for

dev teams. Click here
to read more about why

this “anti-KPI” detroys
dev culture.

anti-KPI

Motivation to be data-driven
As dev leaders, we spend most of our time translating between two
groups of people in two parallel universes. Most CEOs and board
members come from the business side (sales, marketing, finance)
and while they enjoy the outcomes of engineering, they don’t fully
understand how we work. At the same time, many engineers don’t
fully understand the business side of the organization. This is the
background of most dev leaders.

Driven to help our teams succeed and bridge the gap between
engineering and the business, many of us have turned to data
and metrics. But what metrics truly help us accelerate delivery
and correlate to metrics the business cares about (revenue, leads,
retention)?

We would all agree that measuring the right things is important. But
some software development teams still use legacy measurements
that actually stop them from getting better. We call these metrics
anti-KPIs. Some of the most common software development anti-
KPIs include velocity (story points completed), lines of code, code
commits, Jira tickets completed.

What do these anti-KPIs all have in common? First, they may on
the surface indicate that your contributors are busy but they don’t
actually help you figure out if you’re providing value to customers.
Second, they encourage the wrong behavior. Is writing more code
good? Maybe. Or maybe it is a sign of inefficiency. Do completed
Jira tasks show productivity? Most developers would argue that
what happens in Jira has little to do with the “real work” of writing
code. Third, and worst of all, these anti-KPIs can easily be gamed.
Your contributors that are struggling might be tempted to inflate
these anti-KPI numbers (which they can do easily) which actually
blocks you from giving them the help they need.

So what should modern dev leaders measure? Keep reading to
discover 17 metrics that matter for dev leaders and how to use
them.

https://linearb.io/blog/why-agile-velocity-is-the-most-dangerous-metric-for-software-development-teams/
https://linearb.io/blog/why-agile-velocity-is-the-most-dangerous-metric-for-software-development-teams/
https://linearb.io/blog/why-agile-velocity-is-the-most-dangerous-metric-for-software-development-teams/
https://linearb.io/blog/why-agile-velocity-is-the-most-dangerous-metric-for-software-development-teams/
https://linearb.io/blog/why-agile-velocity-is-the-most-dangerous-metric-for-software-development-teams/
https://linearb.io/blog/why-agile-velocity-is-the-most-dangerous-metric-for-software-development-teams/

17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 3

What to Measure?
At LinearB we think of operational excellence in software
engineering as the pursuit of predictably delivering projects,
with high quality, maintaining efficient working hours, with happy
contributors and teams, continuously improving. That’s a lot :-) But
we think it’s possible.

It can seem overwhelming - especially if you’re not sure how you’re
doing against all of those dimensions and what steps can be taken
to improve. We worked backwards from the goal of delighting our
customers and being operationally excellent and came up with
12 key performance indicators. Some you’re probably already
measuring. Some may be new to you.

We look at three categories of KPIs:
•	 	 Work quality
•	 	 Delivery pipeline
•	 	 Investment profile

And we measure those categories across two dimensions:
•	 	 Iterations
•	 	 Teams

DELIVERY PIPELINE
Delivery matters! An end to

end view of your pipeline
with metrics like time to
merge, time to deploy,

deploy frequency, and cycle
time uncovers bottlenecks

and accelerates your
delivery rate.

INVESTMENT PROFILE
Are your teams working
on bugs or new value?

LinearB is the first platform
to combine git and

project insights to provide
unprecedented visibility,

even if your record tracking
isn’t pristine.

QUALITY
See what holds your teams

back. Understand where
you suffer from high code

churn and large amounts of
rework. Use metrics and set
goals to adopt a continuous

refactoring culture and
shorten lead times for

changes.

ITERATION
Control and predictably
complete your iteration

commitments. Reduce story
churn, get alerted on stuck
PRs, and get an automated
data-driven retrospective
report delivered right to

your inbox.

TEAM
Happy and engaged teams

deliver more. Efficient
teams avoid burnout.

Empower your teams with
access to the metrics they

need to operate successfully
and autonomously.

At LinearB we think of
operational excellence

in software engineering
as the pursuit of

predictably delivering
projects, with high

quality, maintaining
efficient working hours,

with happy contributors
and teams, continuously

improving.

17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 4

Measure Your Software
Delivery Pipeline
Your software delivery pipeline is what enables your team to
deliver code to production. It includes all of the phases from “work
requested” all the way through release to production and validation.
Some of the common phases include development work beginning,
pull request open, pull request merge, and release to prod.

Efficient delivery pipelines lead to predictable value delivery,
happy developers, happy product owners, and happy customers.
Frustrations arise with inefficient pipelines. These situations can
happen when code is merged and ready to be released but “the
release is not until next week” or when a developer has opened a
pull request but it takes days to receive a review or when a story
has been sitting in the backlog for weeks.

Measuring the stages of your delivery pipeline allows for bottleneck
detection. This provides a high leverage point to increase your
delivery performance because it impacts all teams and contributors

ESSENTIAL KPIs TO MEASURE:

Efficient delivery
pipelines lead to

predictable value
delivery, happy

developers, happy
product owners, and

happy customers.
Frustrations arise with

inefficient pipelines.

Cycle Time: The amount of time from work started until work finished.
Why it matters: Cycle time is the #1 indicator of your speed to value
and efficiency ratio.

Note: Many of you are already measuring (or trying to measure) cycle
time. But what do you do when you think your cycle time is too high?
The next four KPIs help you diagnose where to spend your time to
drive cycle time down.

17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 5

Cycle time was among
the most impacted

metrics when dev
teams shifted remote.

Click here to download
the report to learn

why and get 10 other
insights.

Lead time: The amount of time from work requested until release.
Why it matters: Start time + Cycle time = Lead time. Once you
understand your cycle time, looking at start time can tell you how long
it takes on average to get through your product management process
and backlog. If you have high start times it could be an indication you
need to hire more contributors or change the way you set expectations
with customers and your sales team.

Time to release: The amount of time from Pull Request Merged to
Production Release
Why it matters: Your developers may have finished their job but your
customers may not be getting the value. If time to release is high, it
could mean you need to invest more in continuous deployment (CD) or
that you have an opportunity to move to a micro-service architecture.

Time to merge: The amount of time from first Commit to PR Merged
Why it matters: This is a key indicator of your cycle time. It can show
the efficiency of your pipeline and it affects all members of your team.
If time to merge is high it could be an indication that you’re lacking
automation or your team needs additional coaching or process or an
indicator your developers are not getting enough detail from product
management.

Review request waiting time or pickup time: The amount of time it
takes from the pull request submitted until review begins.
Why it matters: Efficient teams have a low pickup time. The less time
PRs spend waiting fo review, the faster they are released. This metric
is important for all dev teams, but is even more critical for remote dev
teams.

Deployment Frequency: The number of releases per day.
Why it matters: This is a strong indicator of how much value your team
is capable of getting into the hands of customers. Even if you have an
efficient pipeline, if your deployment frequency is low, you may not be
delivering enough value.

https://linearb.io/remote-dev-productivity-trends/
https://linearb.io/remote-dev-productivity-trends/
https://linearb.io/remote-dev-productivity-trends/
https://linearb.io/remote-dev-productivity-trends/
https://linearb.io/remote-dev-productivity-trends/

17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 6

Measure Your Investment Profile
The most valuable asset that your organization possesses is your
people’s time. It is a scarce and limited resource. There are many
forces pulling at your team’s time. Your CEO wants to deliver new
value to customers, your engineers want non functional investment,
the support team wants to fix bugs, and your sales team brings
customer commitments. Lacking visibility into where your team is
actually spending time makes balancing all of these forces very
difficult.

Your investment profile is a data-driven representation of the types
of work in which your team is spending effort. The work types
typically include, but are not limited to, stories, non-functional
tasks, and bugs.

Measuring and tracking your investment profile puts you back in
control. It allows you to determine if your actual investment areas
match your expected investment areas. It also allows you to be in
the driver’s seat when interacting with stakeholders like your CEO or
Product lead.

ESSENTIAL KPIs TO MEASURE:

Story to Bug Ratio: The ratio of completed stories to completed bug.
Why it matters: You probably know how many production bugs you
have but do you know the effect it has on your customer-facing work?
Your contributors certainly know when they feel like they are spending
too much time on bugs. Quantifying the impact can help you decide if
you have a bigger issue to investigate.

Measuring and tracking
your investment profile

puts you back in control.
It allows you to determine

if your actual investment
areas match your

expected investment
areas.

17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 7

Measure Your Work Quality
Most teams have experienced the situation where low quality
leads to missed delivery dates, iteration interruptions, long hours,
unhappy customers, and a frustrated engineering organization. On
the flip side, high quality leads to predictable delivery, efficient work
hours, happy customers, and a happy engineering organization.

There are many different metrics that you could measure as an
engineering leader. Some of the classics range from test coverage
to service uptime. While these metrics are great, we have found
that there are a few metrics that really help to measure delivery
predictability.

ESSENTIAL KPIs TO MEASURE:

The ability of your team
leaders to drive delivery

through their teams
ultimately results in
your organization’s

failure or success.

Support & Sales Issues: The percentage of work dedicated to one-off
requests coming from the support or sales team.
Why it matters: If you build software for large enterprises, developing
based on support and sales team requirements may be a great use of
resources. If not, if this ratio of work is high, it could be an indication of
planning issues.

High risk work: Branches with large change and high rework or
refactored work.
Why it matters: The general rule on most dev teams is that the larger
the change, the higher the risk (i.e. branches with 300 lines of code
are riskier than small branches). Branches with a high percentange of
rework and refactored work are also riskier. High risk work is a leading
indicator of quality.

17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 8

Code Rework: Percentage of recently delivered code your team is
already rewriting.
Why it matters: A high rework percentage could mean you have a
training issue, you’re rushing the process, your review process is
lacking or you have a breakdown in communication with product
management.

Unreviewed Pull Request Ratio: The ratio of pull requests merged
without review.
Why it matters: In addition to helping understand potential quality
issues, analyzing unreviewed pull requests can sometimes be an
indication of a training or culture issue on a given team.

Bugs Found in Prod: The number of bugs found in production per time
period.
Why it matters: Measuring bugs found tending across time is a quick
way to determine if your quality is improving or decreasing.

PR merge without review: The ratio of pull requests merged
without review.
Why it matters: In addition to helping understand potential quality
issues, analyzing unreviewed pull requests can sometimes be an
indication of a training or culture issue on a given team.

Review Depth: The average number of comments per pull request
review.
Why it matters: This metric is an indication regarding the quality of the
review and how thorough reviews are done. Reviews are an important
factor for improving code quality and finding quality issues in code
before it is merged and deployed.

17 METRICS FOR MODERN DEV LEADERS

Measurement Dimensions
We think it’s critical to measure these KPIs in a way that’s aligned
with how developers actually work. For us that means looking at
Teams and Iterations.

Team Dimension
As your engineering organization scales, it is common to find
yourself reliant on your individual engineering teams. The ability of
your team leaders to drive delivery through their teams ultimately
results in your organization’s failure or success. A frustrating
situation to be in is when you have a team that is struggling but you
do not have measurement visibility to understand why and how to
help.

Therefore, it is important that you not only measure all essential
KPIs at the organization level, but also at the team level. This allows
for three main things:

1.	 It provides a success framework for your team leader to
operate within.

2.	�It allows you to quickly understand where to focus your time,
which teams are operating successfully and which teams are
struggling?

3.	�It allows you to make a positive impact with the struggling
team as you will have the measurement visibility to
understand what is happening
and act.

ESSENTIAL KPIs TO MEASURE:

...the first step is to
educate your team

on what you’re doing
and why it will help

them get better.

WIP Amount: How much work in progress assigned to a contributor or
team.
Why it matters: In addition to helping understand potential quality
issues, analyzing unreviewed pull requests can sometimes be an
indication of a training or culture issue on a given team.

17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 10

Iteration Dimension
The iteration is the delivery pulse of your engineering organization.
It represents the construct in which your teams operate. One of the
great things about iterations is that they naturally provide proper
time periods for measurement.

If you are using the scrum methodology, the sprint length is a great
measurement boundary. If you are using Kanban, a one week time
frame provides a nice boundary.

ESSENTIAL KPIs TO MEASURE:

Iteration Churn: How many stories come into or out of the iteration
once its begun
Why it matters: If you build software for large enterprises, developing
based on sales team requirements may be a great use of resources.
If not, if your ratio of work coming from sales is high it could be an
indication of an issue during the planning phase.

Carryover Work: How many stories carryover from one iteration to the
next
Why it matters: If you build software for large enterprises, developing
based on sales team requirements may be a great use of resources.
If not, if your ratio of work coming from sales is high it could be an
indication of an issue during the planning phase.

How do metrics impact your culture?
Many dev leaders worry about how using metrics will impact the culture of their teams. LinearB
was founded by dev leaders, for dev leaders. Check out these 2 blog articles to learn the best
ways to introduce and use metrics to encourage a positive, productive culture.

Can software leaders use metrics
without damaging culture?

How to introduce data-driven
culture to your dev team

https://linearb.io/blog/how-to-introduce-data-driven-culture-to-your-dev-team/
https://linearb.io/blog/how-software-leaders-can-use-metrics-without-damaging-culture/
https://linearb.io/blog/how-software-leaders-can-use-metrics-without-damaging-culture/
https://linearb.io/blog/how-software-leaders-can-use-metrics-without-damaging-culture/
https://linearb.io/blog/how-software-leaders-can-use-metrics-without-damaging-culture/
https://linearb.io/blog/how-software-leaders-can-use-metrics-without-damaging-culture/
https://linearb.io/blog/how-to-introduce-data-driven-culture-to-your-dev-team/
https://linearb.io/blog/how-to-introduce-data-driven-culture-to-your-dev-team/

17 METRICS FOR MODERN DEV LEADERS

LINEARB.IO 11

Gain visibility into your dev team
& help them improve today.
Connect with LinearB

START A FREE TRIAL BOOK A DEMO

Git, Jira, & Slack coming together
to create a new level of context
We connect and analyze data from across your technology stack to unify engineering and
product and show you how to improve delivery predictability, speed and quality.

What do I do with this data?
As you start to measure these KPIs, the first step for you as a leader is to educate your team
on what you’re doing and why it will help them get better. At LinearB we put these metrics at
the center of our business and it helps us deliver value to customers faster with higher quality.

https://linearb.io/trial/
https://linearb.io/#demobot

